

ION GNSS 2011 TUTORIAL

Augmented GNSS: Fundamentals and Keys to Integrity and Continuity

Sam Pullen

Department of Aeronautics and Astronautics Stanford University, Stanford, CA. 94305-4035 USA

Tuesday, Sept. 20, 2011 1:30 – 5:00 PM Oregon Convention Center, Portland, Oregon

(last updated 9/16/11)

Acknowledgements:

B. Belabbas, J. Blanch, R. Braff, M. Brenner, J. Burns, B. Clark, K. Class, S. Datta-Barua, P. Enge, M. Harris, R. Kelly, R. Key, J. Lee, M. Luo, A. Mitelman, T. Murphy, Y.S. Park, B. Parkinson, B. Pervan, R.E. Phelts, J. Rife, C. Rodriguez, J. Scheitlin, C. Shively, K. Suzuki, R. Swider, F. van Graas, T. Walter, J. Warburton, G. Xie, G. Zhang, and more...

©2011 by Sam Pullen

Outline

- Augmented GNSS Terminology
- Introduction to GNSS and GNSS Augmentation Differential GNSS (DGNSS)
- GBAS and SBAS System Architectures
- Aviation Applications and Requirements
- Principles of Integrity and Continuity
- Specific Examples:
 - Nominal Error Bounding
 - Signal Deformation Monitoring
 - Ephemeris Monitoring
 - Ionospheric Anomaly Mitigation
- Summary

Augmented GNSS Terminology

GPS: Global Positioning System

GNSS: Global Navigation Satellite Systems

DGPS: Differential GPS (or GNSS)

L(A)DGPS: Local-Area Differential GPS

WADGPS: Wide-Area Differential GPS

CDGPS: Carrier-Phase Differential GPS (usually a

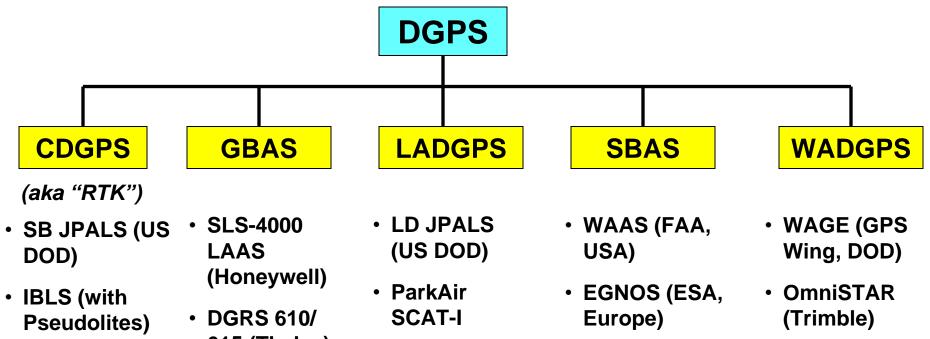
subset of Local-Area DGPS)

LAAS: Local Area Augmentation System (FAA)

GBAS: Ground-Based Augmentation System

(international; includes LAAS)

WAAS: Wide Area Augmentation System (FAA)


SBAS: Space-Based Augmentation System

(international; includes WAAS)

Augmented GNSS Terminology (2)

- Surveying
- Precision **Farming**
- Other cm-dm level apps

- **615 (Thales)**
- KIX GBAS (NEC, Japan)
- LCCS-A-2000 (NPPF Spectr, Russia)
- SELEX-SI **GBAS**

- NDGPS (US
- **Coast Guard)**
- Commercial services
- Many other meter-level apps

- MSAS (JCAB, Japan)
- GAGAN (India)
- SNAS (China)

- StarFire (NavCom)
- Other commercial services

Augmented GNSS Classifications

Global Category (ICAO SARPS)	GBAS	SBAS	
National Program (e.g., FAA; RTCA Standards for U.S.)	LAAS	WAAS EGNOS MSAS etc.	
Contractor Systems	Honeywell SLS- 4000 Thales DGRS-615 KIX GBAS etc.	Raytheon Thales Alenia NEC/Raytheon etc.	

Aviation GNSS Terminology

Used

by

RTCA

ICAO: International Civil Aviation Organization

SARPS: Standards and Recommended Practices

(ICAO Requirements)

MASPS: Minimum Acceptable System

Performance Standards (sys. arch.)

MOPS: Minimum Operational Performance

Standards (user avionics)

ICD: Interface Control Document

NPA: Non-Precision Approach (2-D horizontal)

LNAV/VNAV:Lateral/Vertical Navigation Approach

LPV: Lateral Position Vertical Approach

CAT-I Category I Precision Approach (200 ft DH)

CAT-II Category II Precision Approach (100 ft DH)

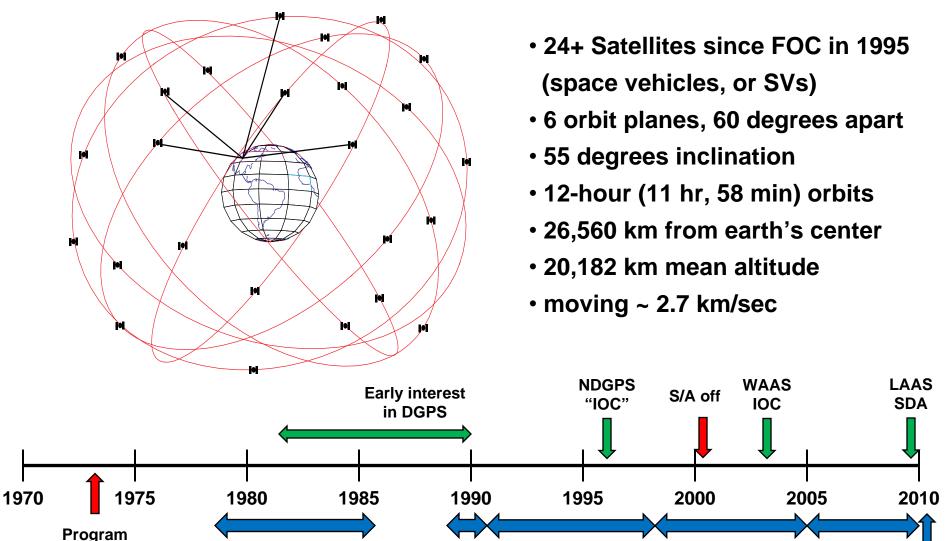
CAT-III Category III Precision Approach (0-50 ft DH)

20 September 2011

Augmented GNSS: Integrity and Continuity

6

Outline



- Augmented GNSS Terminology
- Introduction to GNSS and GNSS Augmentation Differential GNSS (DGNSS)
- GBAS and SBAS System Architectures
- Aviation Applications and Requirements
- Principles of Integrity and Continuity
- Specific Examples:
 - Nominal Error Bounding
 - Signal Deformation Monitoring
 - Ephemeris Monitoring
 - Ionospheric Anomaly Mitigation
- Summary

The Evolution of GPS

8 Blk IIR-

M SVs

"kickoff"

14 Blk IIA

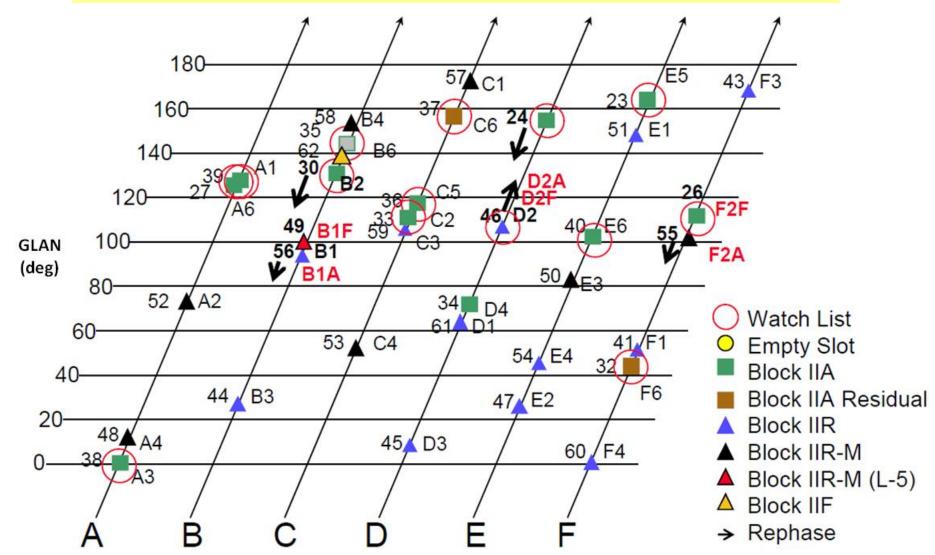
SVs

12 Blk IIR

SVs

9 Blk II

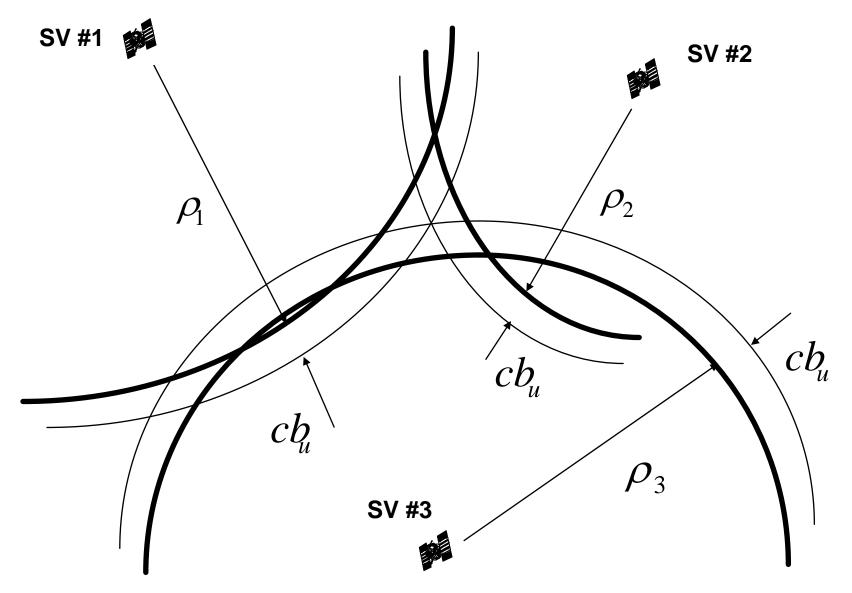
SVs


11 Blk I SVs

The GPS Space Segment (as of Sept. 2010)

Source: Lt. Col M. Manor, "GPS Status (Const. Brief)," CGSIC, Sept. 2010

The GPS Ground Segment Today

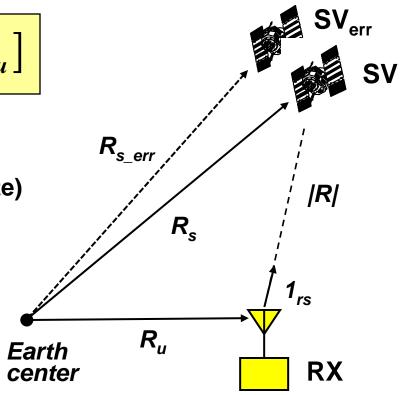

Source: Col. B. Gruber, "GPS Mod. & Prog. Upd.," Munich SatNav Summit, March 2011

GPS Measurements: "Pseudoranging"



Elements of a Pseudorange

- ρ = measured pseudorange (sec)
- c = speed of light in vacuum \cong 3 × 10⁸ m/s
- |R| = true (geometric) range from RX to SV (m)
- B = SV clock error (previously included S/A) (sec)
- b = RX clock error (sec)
- ν = RX noise error (sec)
- M = RX multipath error (sec)
- I = Ionospheric delay at RX location (sec)
- T = Tropospheric delay at RX location (sec)
- ε = other receiver errors (sec)



True Range and Ephemeris Error

$$|R| = |R_s - R_u| = I_{rs} \bullet [R_s - R_u]$$

- R = true vector from RX to SV ($\equiv R_{rs}$)
- 1_{rs} = true unit vector along R (1' = estimate)
- R_s = true vector from Earth center to SV
- R_{μ} = true vector from Earth center to RX
- R_s ' (estimate of R_s) derived from broadcast navigation data (ephemeris messages)
- R_u ' (estimate of R_u) is derived from estimated user position improved by iteration during position determination (meter-level accuracy not needed)
- What is the impact of errors in R_s? (Come back to this later...)

"Corrected" Pseudorange and **Position Solution**

$$\rho_c = \rho + c B_{est} - c (T_{est} + I_{est})$$

- "corrected" pseudorange measurement (sec)
- SV clock error correction from navigation data (m)
- ionospheric error correction based on Klobuchar model with parameters included in navigation data (m)
- tropospheric error correction based on external T_{est} meteorology model (temp., pressure, humidity inputs) (m)

Iterate and Linearize:
$$\mathbf{x} = \mathbf{x}_0 + \delta \mathbf{x}$$
 $\mathbf{b} = \mathbf{b}_0 + \delta \mathbf{b}$ $\delta \mathbf{X} = [\delta \mathbf{x} \ \delta \mathbf{b}]^T$

$$b = b_0 + \delta b$$

$$\delta \mathbf{X} \equiv [\delta \mathbf{x} \ \delta \mathbf{b}]^{\mathsf{T}}$$

$$\delta \rho_c = G \delta X + \xi_\rho$$

$$G = \begin{bmatrix} -1 \\ -1 \\ rs_{-1} \\ 1 \\ rs_{-2} \\ \vdots \\ -1 \\ rs_{-N} \\ 1 \end{bmatrix}$$

$$\delta X_{est} = (G^T W G)^{-1} G^T W \delta \rho_c$$

$$W \equiv \text{diag} [w_1, w_2, ..., w_N]$$

(default:
$$w_1 = w_2 = ... = w_N = 1$$
)

Range-Domain Error Breakdown

Examine pseudorange error relative to "perfect" range, meaning range to true satellite position:

$$\rho_{err} = c(-\Delta B + \Delta b + \Delta T + \Delta I + C) + \Delta A(S - U) + A\Delta S$$

- ρ_{err} = pseudorange error relative to perfect range
- ΔY = residual error in (generic) vector/matrix Y after applying correction or broadcast information (sec)
- $C \equiv M + \nu + \varepsilon$ (sum of uncorrected receiver errors) (m)

$$\mathbf{A}_{(N \times 3N)} = \begin{bmatrix} -\mathbf{1}_{s_{-1}}^{T} & 0 & 0 & 0 \\ 0 & -\mathbf{1}_{s_{-2}}^{T} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & -\mathbf{1}_{s_{-N}}^{T} \end{bmatrix} \qquad \mathbf{S}_{(3N \times 1)} = \begin{bmatrix} R_{s1} \\ R_{s2} \\ \vdots \\ R_{sN} \end{bmatrix} \qquad \mathbf{U}_{(3N \times 1)} = \begin{bmatrix} R_{u1} \\ R_{u2} \\ \vdots \\ R_{uN} \end{bmatrix}$$

$$\mathbf{S}_{(\mathbf{3N\times 1})} = egin{bmatrix} R_{s1}' \ R_{s2}' \ dots \ R_{sN}' \end{bmatrix}$$

$$oldsymbol{U_{(3N\times1)}} = egin{bmatrix} R_{u1} \ R_{u2} \ dots \ R_{uN} \end{bmatrix}$$

$$\Delta X_{\text{est}} = (G^T W G)^{-1} G^T W \rho_{\text{err}}$$

"Dilution of Precision" (DOP)

- A very useful (if imprecise) result comes from taking an idealized covariance of the position state error estimate ΔX_{est} from the previous slide
- For default weighting matrix ($W = I_{NxN}$) and case where ρ_{err} for each satellite is zero-mean and i.i.d.:

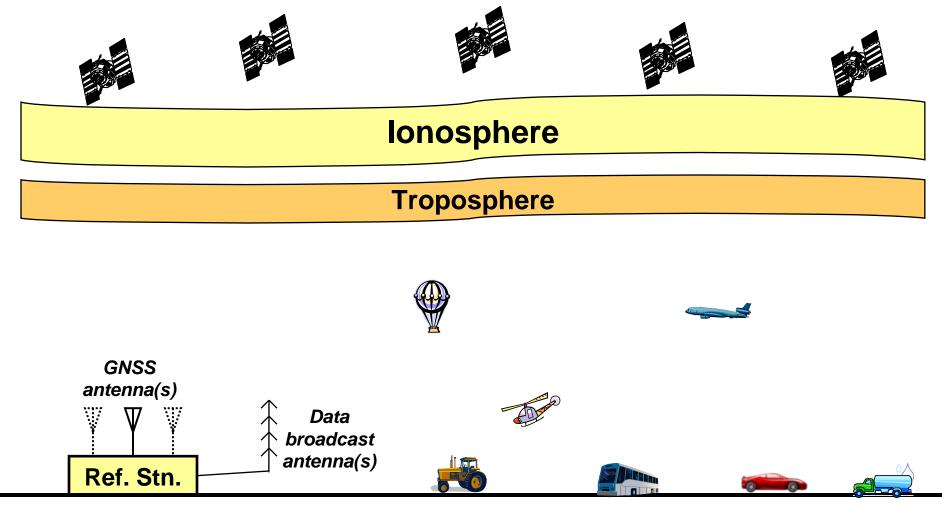
Cov
$$(\Delta X_{est}) = (G^T G)^{-1} \text{Cov} (\rho_{err}) = (G^T G)^{-1} \sigma_{\rho}^2$$

- Where σ_{ρ}^2 = variance of i.i.d., zero-mean pseudorange error

$$H_{(N \times N)} \equiv (G^T G)^{-1} \equiv \begin{bmatrix} XDOP^2 & \bullet & \bullet & \bullet \\ \bullet & YDOP^2 & \bullet & \bullet \\ \bullet & \bullet & VDOP^2 & \bullet \end{bmatrix}$$
 Only a function of SV geometry

$$HDOP^2 \equiv XDOP^2 + YDOP^2$$
 $PDOP^2 \equiv XDOP^2 + YDOP^2 + VDOP^2$ $GDOP^2 \equiv XDOP^2 + YDOP^2 + VDOP^2 + TDOP^2$

The Usefulness of DOP


- (Unweighted) DOP separates the two primary sources of GNSS errors:
 - 1. Errors in ranging measurements
 - 2. Impact of satellite geometry
- Differential GNSS primarily addresses the first error source by eliminating common-mode range errors.
 - One exception in SBAS: additional ranging measurements from GEO satellites
- GNSS modernization addresses both error sources, but the second one is typically of more benefit to differential GNSS users.

Local Area DGNSS: The Basic Concept


 Exploit the spatial and temporal correlation of several GNSS error sources to (mostly) remove them from user range measurements.

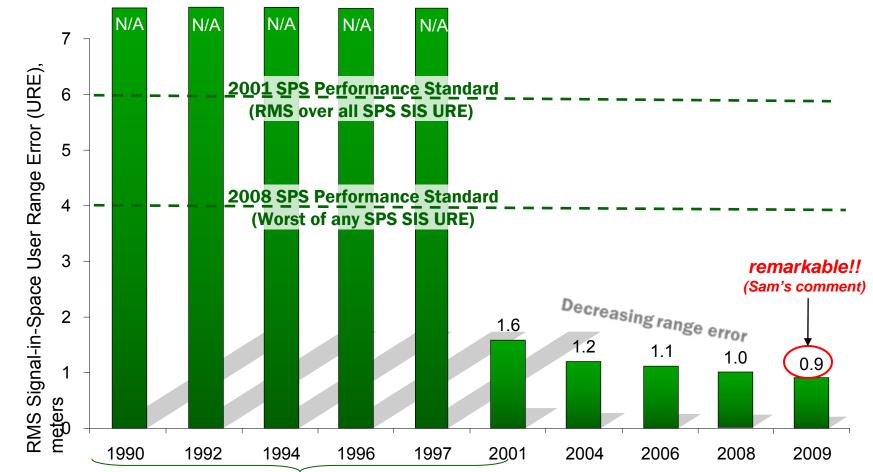
Local Area DGNSS: The Basic Concept (2)

GPS Range Error Sources

Error Source	Approx. 1∏ Error for Standalone GPS Users	Approx. 1∏ Error for LADGPS Users (a = 50 km)	
SV Clock	1 – 2 m	П 2 – 3 ст	
SV Ephemeris	1 – 3 m	1 – 5 cm	
Troposphere	2 – 3 m (uncorrected) 0.1 – 0.5 m (corrected by atmospheric model)	1 – 5 cm	
Ionosphere	1 – 7 m (corrected by Klobuchar model)	10 – 30 cm	
Multipath (ref. and user receivers)	PR: 0.5 – 2 m ^(*) ∏: 0.5 – 1.5 cm	PR: 0.5 – 2 m ^(*)	
Receiver noise (ref. and user receivers)	PR: 0.2 – 0.35 m ^(†)	PR: 0.2 – 0.35 m ^(†)	
Antenna survey error/motion	N/A	0.2 – 1 cm	

^(*)In obstructed scenarios with many large reflectors, multipath errors can be significantly larger.

^(†)This number represents "raw" PR noise, prior to any carrier smoothing.



GPS (SPS) SIS Error Reduction

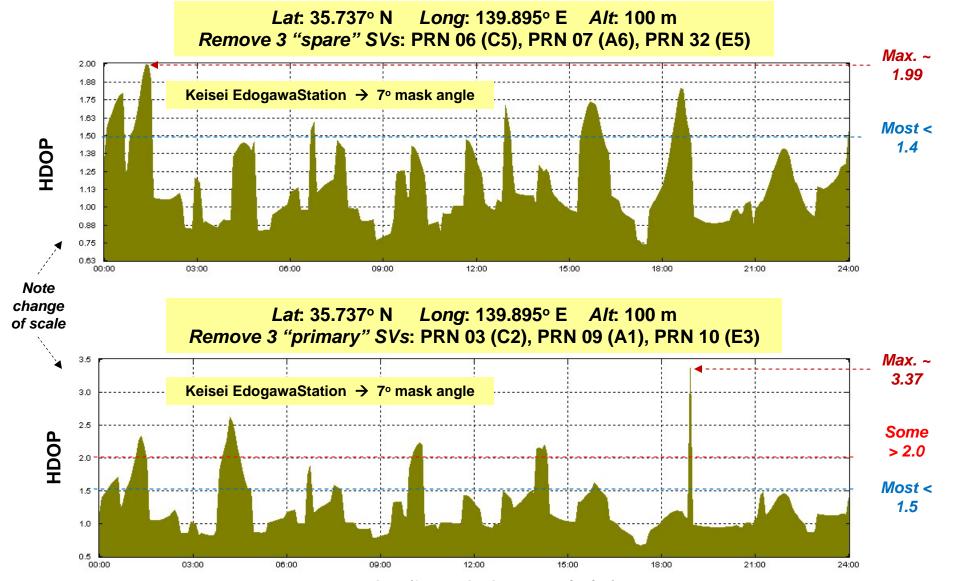
Source: Lt. Col S. Steiner, "GPS Program Update," CGSIC, Sept. 2010

SIS URE: Signal-in-Space contribution to User Range Error (combined SV clock and ephemeris error)

Errors Sensitivity to Satellite Geometry

- Under nominal conditions, GPS satellite geometry quality (as approximated by DOP) varies more than ranging errors and thus drives user accuracy
- Examine variability of 2-D horizontal DOP (HDOP) over one repeatable day of GPS geometries at a typical mid-latitude location
- Use "off-the-shelf" (and highly recommended)
 Trimble Planning Software (version 2.9 for Windows)
 - used to help schedule observations for periods of "good" satellite geometry
 - http://www.trimble.com/planningsoftware.shtml

Typical Horizontal DOPs in Tokyo



Typical Horizontal DOPs in Tokyo (with SV Losses)

Local Time (from midnight on 08/22/11)

Augmented GNSS: Integrity and Continuity

Horizontal Errors with Typical HDOPs

 From pseudorange error table on slide 20, absent unusual multipath:

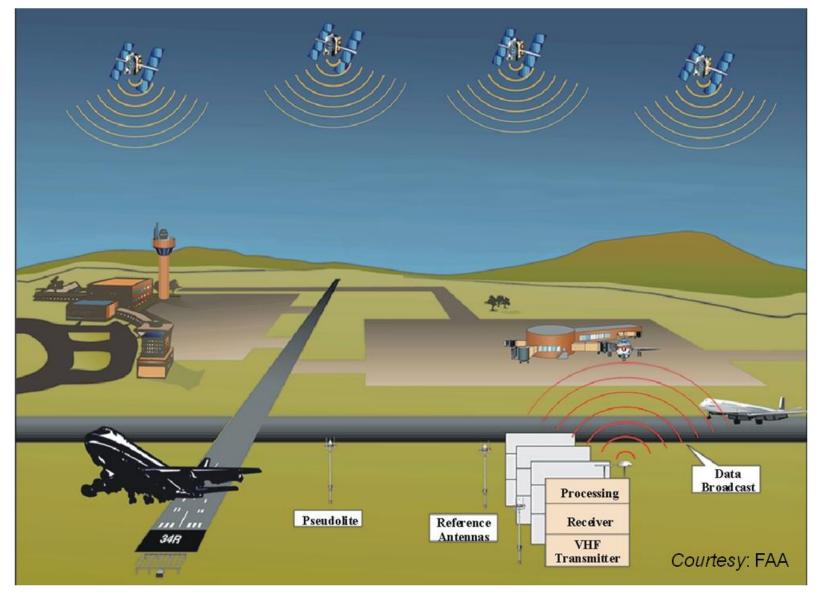
- "standalone" SPS error ≈ 2-3 m (1σ)

- LADGPS error (unsmoothed) ≈ 50 - 80 cm (1σ)

- LADGPS error (smoothed) ≈ $25 - 40 \text{ cm } (1\sigma)$

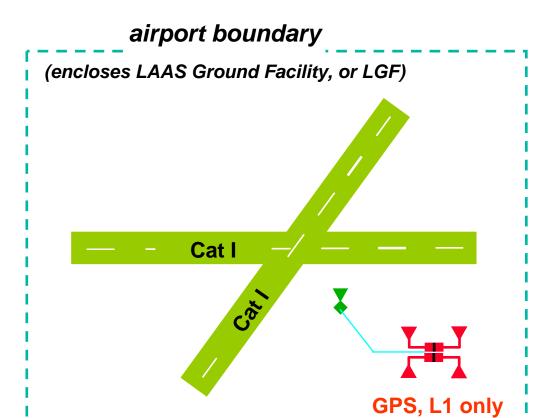
SV Geometry Quality	"Typical" HDOP (Approx.)	SPS horizontal error (1σ)	LADGPS horiz. error (1σ, unsmoothed)	LADGPS horiz. error (1σ, smoothed)
Good	1.0	2 – 3 m	50 – 80 cm	25 – 40 cm
Fair	1.3	2.5 – 4 m	75 – 120 cm	30 – 55 cm
Poor	1.8	3.5 – 6 m	0.9 – 1.5 m	40 – 75 cm
Very Poor	3.0	6 – 10 m	1.5 – 2.5 m	70 – 130 cm

Outline



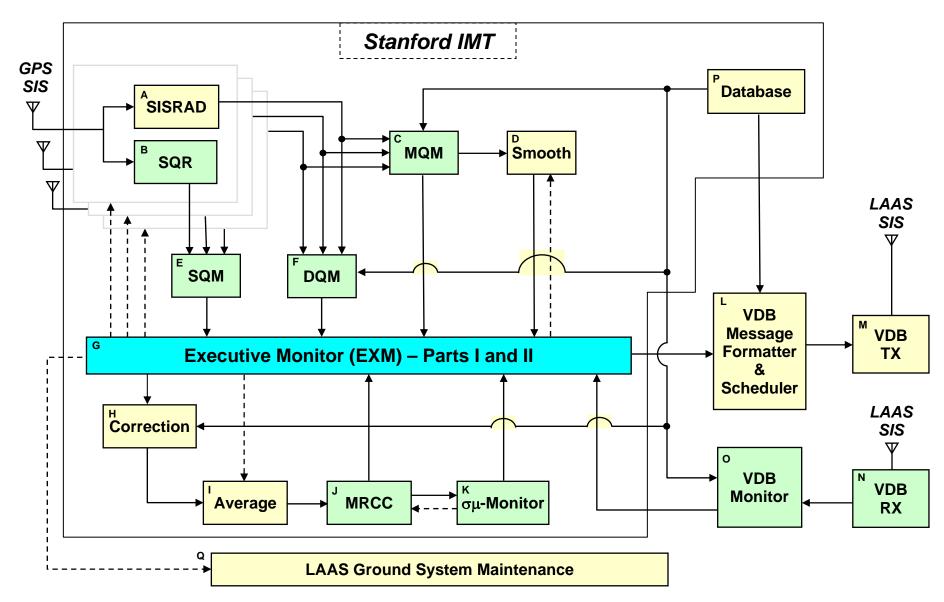
- Augmented GNSS Terminology
- Introduction to GNSS and GNSS Augmentation Differential GNSS (DGNSS)
- GBAS and SBAS System Architectures
- Aviation Applications and Requirements
- Principles of Integrity and Continuity
- Specific Examples:
 - Nominal Error Bounding
 - Signal Deformation Monitoring
 - Ephemeris Monitoring
 - Ionospheric Anomaly Mitigation
- Summary

GBAS (LAAS) Architecture Pictorial



GBAS Architecture Overview (supports CAT I Precision Approach)

Corrected carrier-smoothed -code processing - VPL, LPL calculations **GPS Antennas VHF Antennas**



GBAS Ground System Processing

Fundamental GBAS Processing: Carrier Smoothing

- Carrier smoothing of "raw" pseudorange ("code") measurements is key to both GBAS and SBAS
 - Attenuates receiver noise and high-freq. multipath errors
- GBAS requires (nearly) matched smoothing filters in ground and avionics to limit sensitivity to ionospheric divergence:

$$PR_{s}(k) = \left(\frac{1}{N}\right)PR_{r}(k) + \left(\frac{N-1}{N}\right)[PR_{s}(k-1) + \phi(k) - \phi(k-1)]$$

$$N = S \, / \, T$$
 filter time constant (100 sec) epoch duration (0.5 sec)

 SBAS can smooth for much longer, as it removes divergence on ground using L2 measurements

Fundamental GBAS Processing: Scalar PR Corrections

• GBAS (smoothed) PR corrections use the following standard equations: (n = SV index, m = RR index)

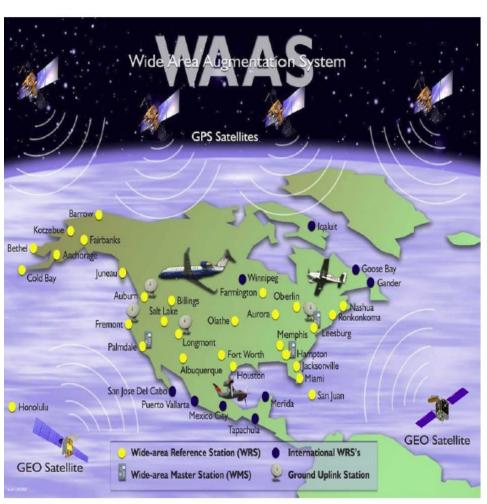
$$PR_{sc}(n,m) = R(n,m) - PR_{s}(n,m) - t_{sv_gps}(n) - smoothed \ PR \ correction - smoothed \ PR \ (see \ slide \ 30) - smoothed \ (see \ slide \ 3$$

Source: FAA Category I LGF Specification, FAA-E-2937A, Apr. 17, 2002

Fundamental GBAS Processing: B-Value Calculations

- Averaged PR corrections are compared with corrections from each RR to generate "B-values"
- B_{nm} = Error in PR correction error for SV n if RR m has failed (meaning that all measurements from RR m are invalid)

$$B_{PR}(n,m) \equiv PR_{corr}(n) - \frac{1}{M(n) - 1} \sum_{\substack{i \in S_n \\ i \neq m}} PR_{sca}(n,i)$$


- B-values are used to:
 - Detect failed RRs and channels (one SV tracked by one RR)
 - Account for possible RR failures in airborne calculation of protection levels ("H1 hypothesis")
 - Feed statistical tests that monitor correction error means and sigmas over time ("sigma-mean monitoring")

SBAS (WAAS) Architecture Pictorial

Source: Leo Eldredge, "WAAS and LAAS Program Status," CGSIC, Sept. 2010

38 Reference Stations

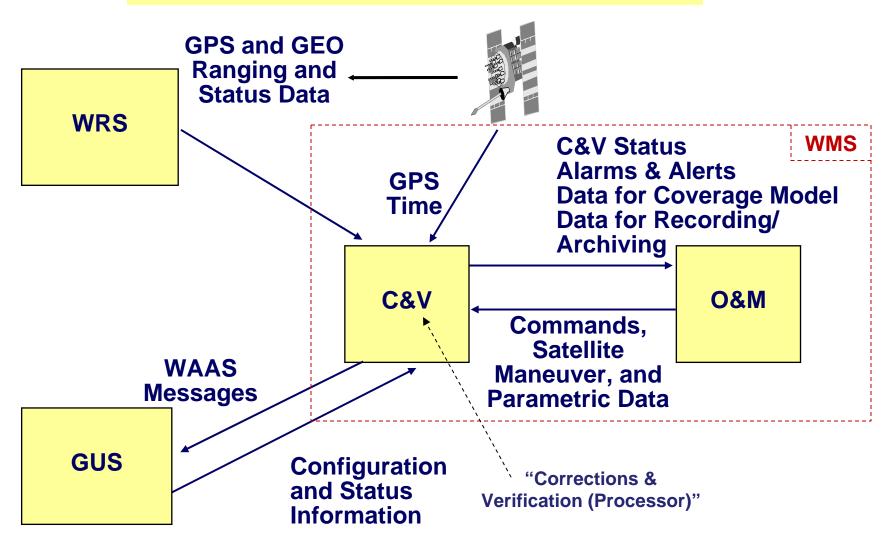
3 Master Stations

4 Ground
Earth Stations

2 Geostationary Satellite Links

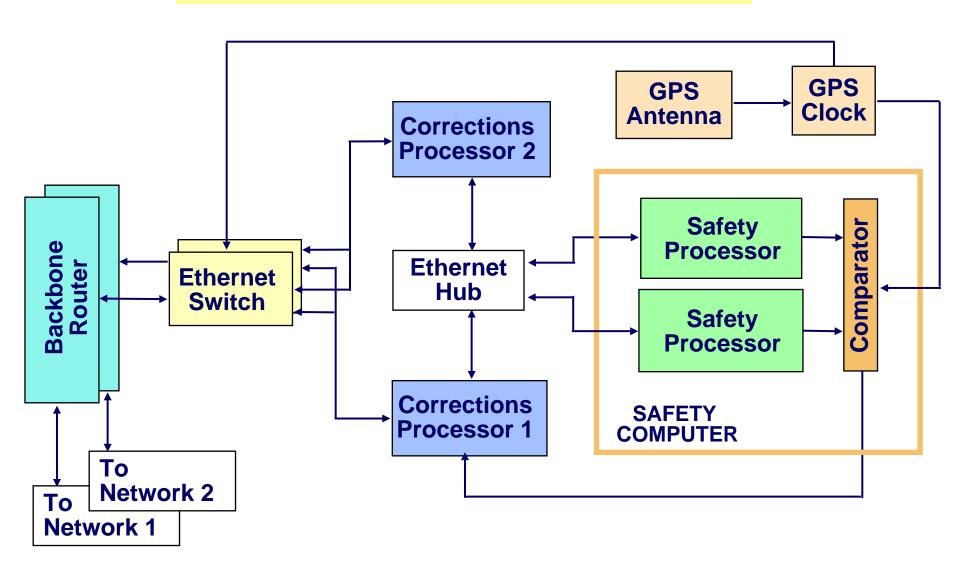
2 Operational Control Centers

SBAS: Key Differences from GBAS


- Many widely-spread reference stations (RSs) provide coverage over very large areas
 - Observability of individual satellites and ionospheric behavior is far better than for independent GBAS sites
- RSs send measurements to master stations, where corrections and integrity bounds valid for the entire coverage area are created
 - Vector corrections separate fast-changing SV clock/ephemeris from slower ionospheric behavior
- L1-compatible correction/integrity messages are uplinked to GEO satellites to cover user space
- Significant latency in RS-MS, MS-GEO, and correction message scheduling make timely alerts much more challenging for SBAS

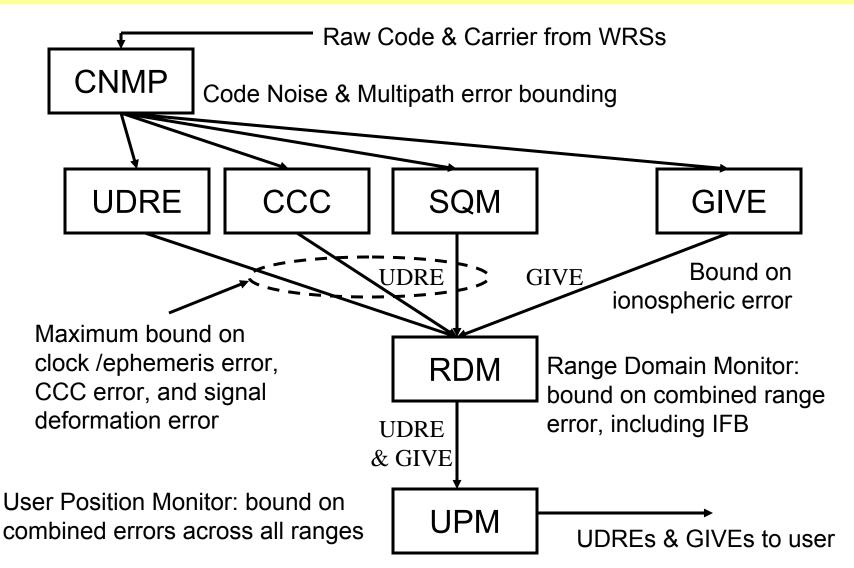
FAA WAAS: System Overview

Source: B. Mahoney, FAA SBAS Tutorial, Feb. 2001



FAA WAAS: C&V Block Diagram

Source: B. Mahoney, FAA SBAS Tutorial, Feb. 2001



FAA WAAS: Safety Processor Flow Diagram

Source: T. Walter, et al, "Evolving WAAS to Serve L1/L5 Users," ION GNSS 2011.

WAAS vs. LAAS: Another Key Difference

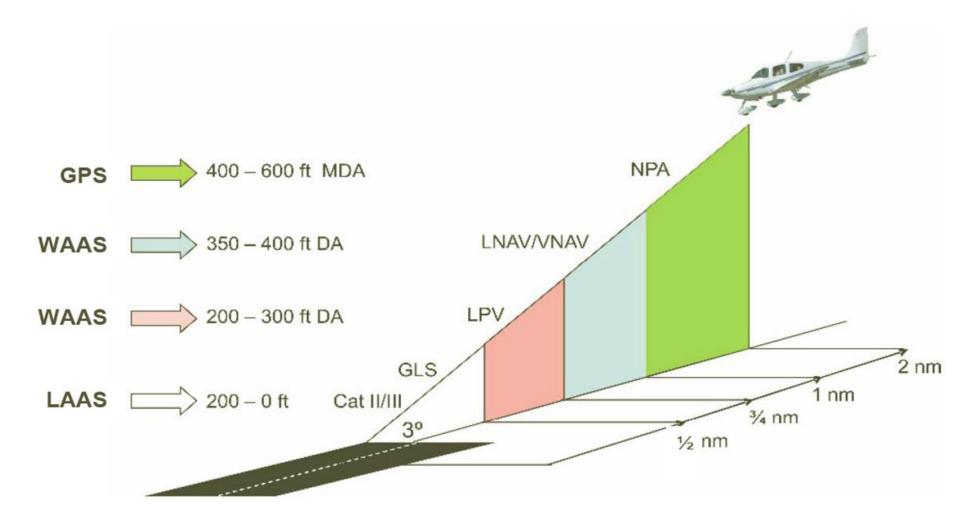
"Calculate then Monitor"

- In Raytheon WAAS implementation, "Corrections Processor" (CP) performs all calculations required to generate corrections and integrity information, but in uncertified ("COTS") software
- Separate "Safety Processor" (SP) is required to perform "final" integrity checks (that determine broadcast error bounds) in "certified" software
- SP integrity checks must assume that outputs from CP are misleading with probability of 1.0 (!!)

"Monitor then Calculate"

- In Honeywell LGF implementation (and in all other GBAS ground systems), all software is "certified"
- Calculation of corrections and integrity monitoring can be mixed without "CP" penalty

Outline


- Augmented GNSS Terminology
- Introduction to GNSS and GNSS Augmentation Differential GNSS (DGNSS)
- GBAS and SBAS System Architectures
- Aviation Applications and Requirements
- Principles of Integrity and Continuity
- Specific Examples:
 - Nominal Error Bounding
 - Signal Deformation Monitoring
 - Ephemeris Monitoring
 - Ionospheric Anomaly Mitigation
- Summary

GPS (SPS), WAAS, and LAAS Approach Minima

Source: L. Eldredge, "WAAS and LAAS Update," CGSIC 47th Meeting, Sept. 2007.

GBAS Service Level (GSL) Definitions

Table 1-1 (Section 1.5.1) of RTCA LAAS MOPS (DO-245A)

GSL	Typical Operation(s) which may be Supported by this Level of Service
Α	Approach operations with vertical guidance (performance of APV-I designation)
В	Approach operations with vertical guidance (performance of APV-II designation)
С	Precision approach to lowest Category I minima
D	Precision approach to lowest Category IIIb minima, when augmented with other airborne equipment
E	Precision approach to lowest Category II/IIIa minima
F	Precision approach to lowest Category IIIb minima

GSL Requirements Table

Table 2-1 (Section 2.3.1) of RTCA LAAS MOPS (DO-245A), Dec. 2004

	Accı	ıracy	Integrity			Continuity	
GSL	95% Lat. NSE	95% Vert. NSE	Pr(Loss of Integrity)	Time to Alert	LAL	VAL	Pr(Loss of Continuity)
А	16 m	20 m	2 × 10 ⁻⁷ / 150 sec	6 sec	40 m	50 m	8×10^{-6} / 15 sec
В	16 m	8 m	2 × 10 ⁻⁷ / 150 sec	6 sec	40 m	20 m	8×10^{-6} / 15 sec
С	16 m	4 m	2 × 10 ⁻⁷ / 150 sec	6 sec	40 m	10 m	8×10^{-6} / 15 sec
D	5 m	2.9 m	10 ⁻⁹ / 15 s (vert.); 30 s (lat.)	2 sec	17 m	10 m	8×10^{-6} / 15 sec
Е	5 m	2.9 m	10 ⁻⁹ / 15 s (vert.); 30 s (lat.)	2 sec	17 m	10 m	4×10^{-6} / 15 sec
F	5 m	2.9 m	10 ⁻⁹ / 15 s (vert.); 30 s (lat.)	2 sec	17 m	10 m	2 × 10 ⁻⁶ / 15 s (vert.); 30 s (lat.)

Navigation Performance Parameters

- ACCURACY: Measure of navigation output deviation from truth.
- INTEGRITY: Ability of a system to provide timely warnings when the system should not be used for navigation. INTEGRITY RISK is the probability of an undetected, threatening navigation system problem.
- CONTINUITY: Likelihood that the navigation signal-in-space supports accuracy and integrity requirements for duration of intended operation. CONTINUITY RISK is the probability of a detected but unscheduled navigation interruption after initiation of an operation.
- **AVAILABILITY**: Fraction of time navigation system is usable (as determined by compliance with accuracy, integrity, and continuity requirements) before approach is initiated.

Accuracy

- Accuracy is a statistical quantity associated with the Navigation Sensor Error (NSE) distribution.
 - most commonly cited as a 95th-percentile error bound
 - Also: Flight Technical Error (FTE) and Total System Error (TSE),
 where TSE = NSE + FTE
- Requirement: the 95% position accuracy shall not exceed the specified value at every location over 24 hours within the service volume when the navigation system predicts that it is available.
- Note: for augmented GPS systems, accuracy is rarely the limiting performance parameter.
 - integrity and continuity requirements normally dictate tighter system accuracy than the actual accuracy requirement demands.

Integrity

- Integrity relates to the trust that can be placed in the information provided by the navigation system.
- Misleading Information (MI) occurs when the true navigation error exceeds the appropriate alert limit (i.e., an unsafe condition).
- Time-to-alert is the time from when an unsafe condition occurs to when an alerting message reaches the pilot (or guidance system)
- A Loss of Integrity (LOI) event occurs when an unsafe condition occurs without annunciation for a time longer than the time-to-alert limit, given that the system predicts it is available.

Continuity

- Continuity is a measure of the likelihood of unexpected loss of navigation during an operation.
- Loss of Continuity occurs when the aircraft is forced to abort an operation during a specified time interval after it has begun.
 - system predicts service was available at start of operation
 - alert from onboard integrity algorithm during operation due to:
 - » loss of GPS satellites
 - » loss of DGPS datalink
 - » degradation of measurement error accuracy
 - » unusual noise behavior under normal conditions (i.e., false alarm)
- Requirement: the probability of Loss of Continuity must be less than a specified value over a specified time interval (15 seconds – 1 hour).

Availability

- A navigation service is deemed to be available if the accuracy, integrity, and continuity requirements are all met.
 - Operationally, checked shortly before service is utilized
 - Offline, evaluated via simulation for locations of interest (over lengthy or repeating time periods)
- Service Availability: the fraction of time (expressed as a probability over all SV geometries and conditions) that the navigation service is available (determined offline).
- Operational Availability refers to typical or maximum periods of time over which the service is unavailable (determined offline – important for flight and ATC planning).
- Requirement: a range of values is usually given actual requirement depends on operational needs of each location.

Outline

- Augmented GNSS Terminology
- Introduction to GNSS and GNSS Augmentation Differential GNSS (DGNSS)
- GBAS and SBAS System Architectures
- Aviation Applications and Requirements
- Principles of Integrity and Continuity
- Specific Examples:
 - Nominal Error Bounding
 - Signal Deformation Monitoring
 - Ephemeris Monitoring
 - Ionospheric Anomaly Mitigation
- Summary

Breakdown of Worldwide Accident Causes: 1959 – 1990 (from ICAO Oct. 1990 Study)

Primary Cause Factors Versus Flight Phase — Worldwide Commercial Jet Fleet — 1959-1990

		Number of Accidents								
Primary Factor	Total	Takeoff	Initial Climb	Climb	Cruise	Descent	Initial Approach	Final Approach	Landing	Load Taxi
Flightcrew	276	27	32	9	5	25	43	97	36	2
Airplane	40	15	3	8	3	2	1	3	3	2
Maintenance	6	1	1	2	2	0	0	0	0	0
Weather	18	0	3	2	2	1	1	6	3	0
Airport/ATC	15	3	1	2	2	2	1	1	2	1
Miscellaneous	13	3	2	2	1	2	0	1	0	2
Unknown	72	14	10	5	5	1	9	9	17	2
Total 440	440	63	52	30	20	33	55	117	61	9

Excludes: Sabotage

■ Military Action


GA-5351

- Total hull loss probability per flight as of 1990 = 1.87×10^{-6}
- Current probability per commercial departure in U.S. = 2.2×10^{-7} (3-year rolling average, March 2006 update)
 - http://faa.gov/about/plans_reports/Performance/performancetargets/details/2041183F53 565DDF.html

Unofficial "Serious Accident" Risk Allocation (from 1983 SAE paper†)

[†]D.L. Gilles, "The Effect of Regulation 25.1309 on Aircraft Design and Maintenance," SAE Paper No. 831406, 1983.

FAA Risk Severity Classifications*

- Minor: failure condition which would not significantly reduce airplane safety, and which involve crew actions that are well within their capabilities
- Major: failure condition which would significantly:
 - (a) Reduce safety margins or functional capabilities of airplane
 - (b) Increase crew workload or conditions impairing crew efficiency
 - (c) Some discomfort to occupants
- Severe Major ("Hazardous" in ATA, JAA): failure condition resulting in more severe consequences than Major:
 - (a) Larger reduction in safety margins or functional airplane capabilities
 - (b) Higher workload or physical distress such that the crew could not be relied upon to perform its tasks accurately or completely
 - (c) Adverse effects on occupants
- Catastrophic: failure conditions which would prevent continued safe flight and landing (with probability ---> 1)
 - * Taken from AC No. 25.1309-1A, AMJ 25.1309, SAE ARP4761 (JHUAPL summary)

Ш

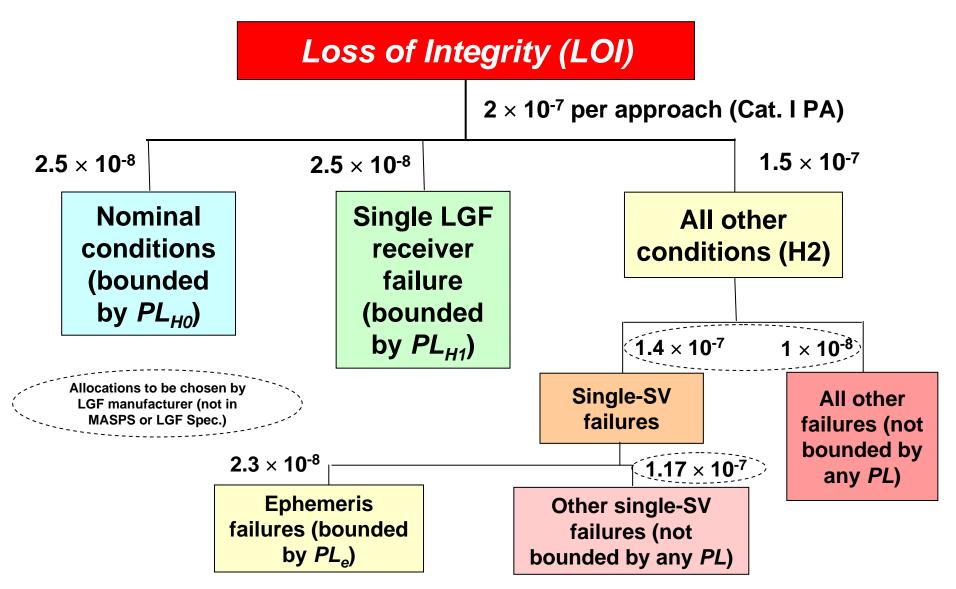
FAA Hazard Risk Index (HRI) Table

- Several versions exist, all with essentially the same meaning
- Source of this version: 1999 Johns Hopkins Applied Physics Laboratory "GPS Risk Assessment Study" final report http://www.faa.gov/asd/international/GUIDANCE_MATL/Jhopkins.pdf

Consequence	Catastrophic	Hazardous	Major	Minor	No
Prob. Of Occurance					Effect
Frequent (>10 ⁻²)	1	3	6	10	21
Reasonably Probable (10 ⁻² to 10 ⁻⁵)	2	5	9	14	22
Remote (10 ⁻⁵ to 10 ⁻⁷)	4	8	13	17	23
Extremely Remote (10 ⁻⁷ to 10 ⁻⁹)	7	12	16	19	24
Extremely Improbable (<10 ⁻⁹)	11	15	18	20	25

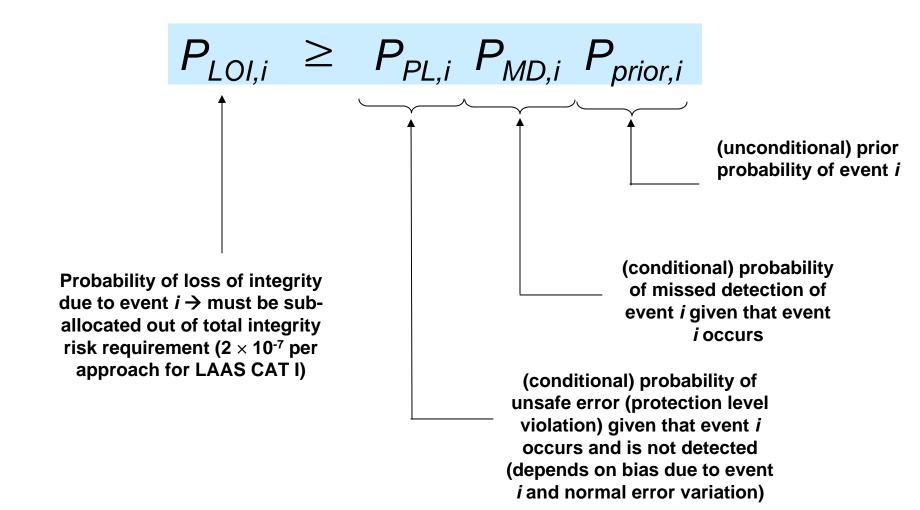
Cat. III ILS	Hazard Risk Index 1-6	Acceptance Criteria Cat. I ILS case Unacceptable
case	7-10	Undesirable
	11-18	Acceptable, but FAA review required
	19-25	Acceptable

RTCA DO-178B Software Classifications


- DO-178B defines five software levels, from A (most critical) to E (least critical – includes COTS software)
- Each level is linked to a specific failure consequence from the Hazard Risk Index model

Failure Consequence	Required Software Level
Catastrophic	Level A
Hazardous/Severe-Major	Level B
Major	Level C
Minor	Level D
No Effect	Level E

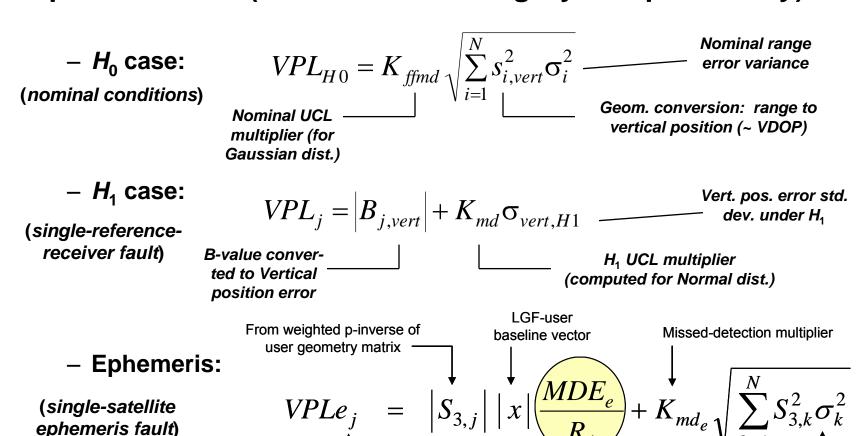
Integrity Fault Tree for CAT I LAAS



Fundamental Integrity Risk Model

For a given fault mode (or anomaly) i:

GNSS Protection Levels: Introduction


- To establish integrity, augmented GNSS systems must provide means to validate in real time that integrity probabilities and alert limits are met.
- This cannot easily be done offline or solely within ground systems because:
 - Achievable error bounds vary with GNSS SV geometry.
 - Ground-based systems cannot know which SV's a given user is tracking.
 - Protecting all possible sets of SV's in user position calculations is numerically difficult.
- Protection level concept translates augmentation system integrity verification in range domain into user position bounds in position domain.

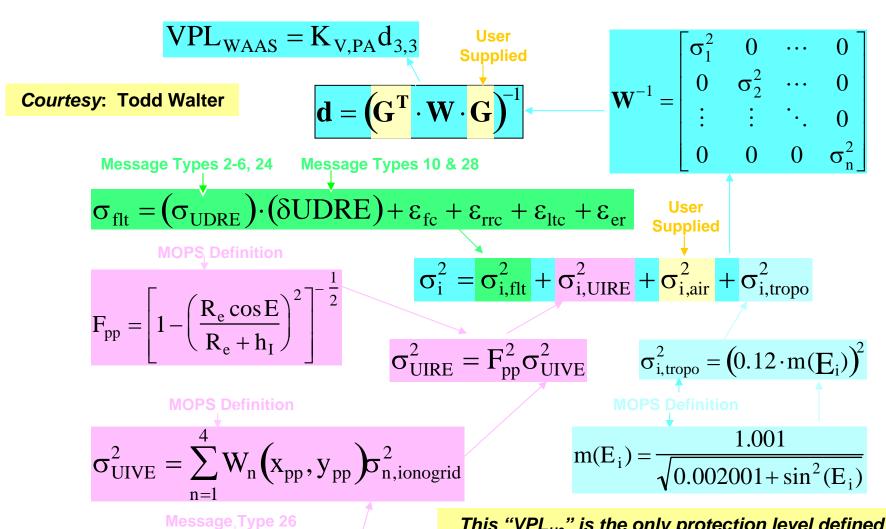
GBAS Protection Level Calculation (1)

 Protection levels represent upper confidence limits on position error (out to desired integrity risk probability):

SV index

Differential ranging error variance (S index "3" = vertical axis)

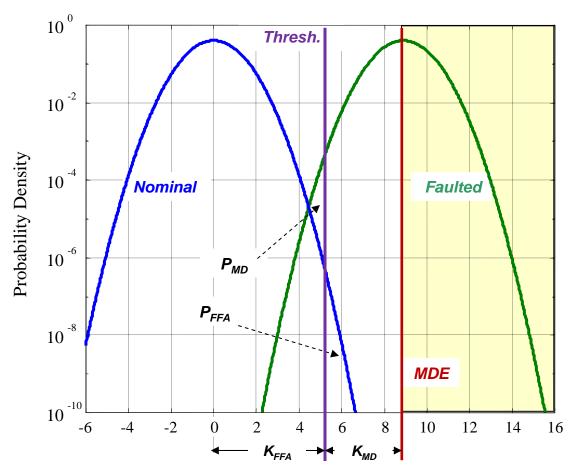
GBAS Protection Level Calculation (2)



- Fault-mode VPL equations (VPL_{H1} and VPL_e) have the form:
 - VPL_{fault} = Mean impact of fault on vertical position error + Impact of nominal + errors, *de-weighted by prior probability of fault*
- LAAS users compute VPL_{H0} (one equation), VPL_{H1} (one equation per SV), and VPL_{e} (one equation per SV) in real-time
 - warning is issued (and operation may be aborted) if maximum
 VPL over all equations exceeds VAL
 - absent an actual anomaly, VPL_{H0} is usually the largest
- Fault modes that do not have VPL's must:
 - be detected and excluded such that VPL_{H0} bounds
 - residual probability that VPL_{H0} does not bound must fall within the "H2" ("not covered") LAAS integrity sub-allocation

SBAS Protection Level Calculation

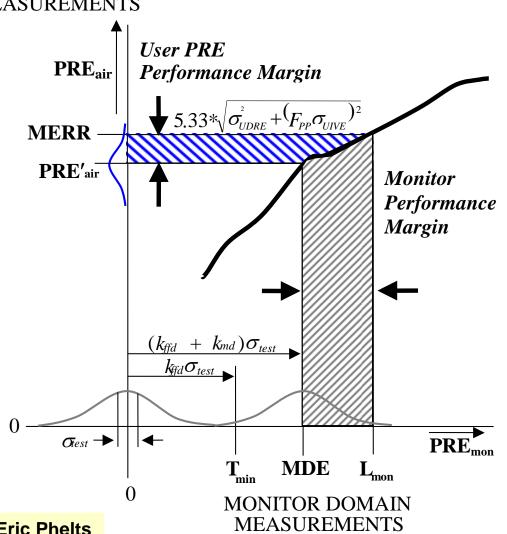
This "VPL_{Ho}" is the only protection level defined for SBAS. Errors not bounded by it must be excluded within time to alert, or σ must be increased until this


VPL is a valid bound.

 $\sigma_{\text{ionogrid}} = \sigma_{\text{GIVE}} + \varepsilon_{\text{iono}}$

Threshold and MDE Definitions

Test Statistic Response (no. of sigmas)


Failures causing test statistic to exceed *Minimum Detectable Error* (MDE) are mitigated such that both integrity and continuity requirements are met.

MDE Relationship to Range Domain Errors

- MDE in test domain corresponds to a given PRE in user range domain depending on differential impact of failure source
- If resulting PRE ≤
 MERR (required range
 error bound), system
 meets requirement with
 margin
- If not, MDE must be lowered (better test) or MERR increased (higher sigmas → loss of availability)

Courtesy: R. Eric Phelts

Assumptions Built Into Protection Level Calculations

- Distributions of range and position-domain errors are assumed to be Gaussian in the tails
 - "K-values" used to convert one-sigma errors to rare-event errors are computed from the standard Normal distribution
- All non-faulted conditions are "nominal" and have one zero-mean Gaussian distribution with the same sigma
- Under faulted conditions, a known bias (due to failure of a single SV or RR) is added to a zero-mean distribution with the same sigma
- Weighted-least-squares is used to translate range-domain errors into position domain
 - Broadcast sigmas are used in weighting matrix, but these are not the same as truly "nominal" sigmas.

Use of "Prior Probabilities"

- Prior probabilities of potentially threatening failures and anomalies are needed to complete fault tree allocation and verification.
 - K_{MD} values in fault-mode protection level equations are derived based on estimated prior probabilities (for satellites) or required prior probabilities (for ground equipment).

For CAT I LAAS:

- H1 requirement (to support VPL_{H1} and KMD ≈ 2.9): probability of faults threatening integrity of reference receiver corrections must be lower than 10-5 per approach (over all RRs).
- For comparison, continuity requirement on reference receiver failures (which includes all causes of loss of function, not just integrity faults), is similar: 2.3×10^{-6} per 15 sec (over all RRs).
- Satellite failure probabilities and atmospheric anomaly probabilities are beyond designers' control → these must be conservatively estimated.

Two Failure Probabilities of Interest

- Failure Onset Probability (probability of transition from "nominal" to "failed" state per unit time)
 - Poisson approx.: not valid at beginning and end of SV life

$$P_{F,onset} \cong \frac{number\ of\ observed\ fault\ events}{total\ observation\ time}$$
 $MTBF \cong \frac{1}{P_{F,onset}} \equiv \text{Mean\ Time\ Between\ Failures}$

- Failure State Probability (long term average probability of being in fault state)
 - exponential queuing approximation

$$P_{F,state} \cong \frac{MTTR}{MTBF + MTTR}$$

 $MTTR \equiv \text{Mean Time To Repair (following failure onset)}$

SV Failure Probability Estimate from SPS Performance Standard

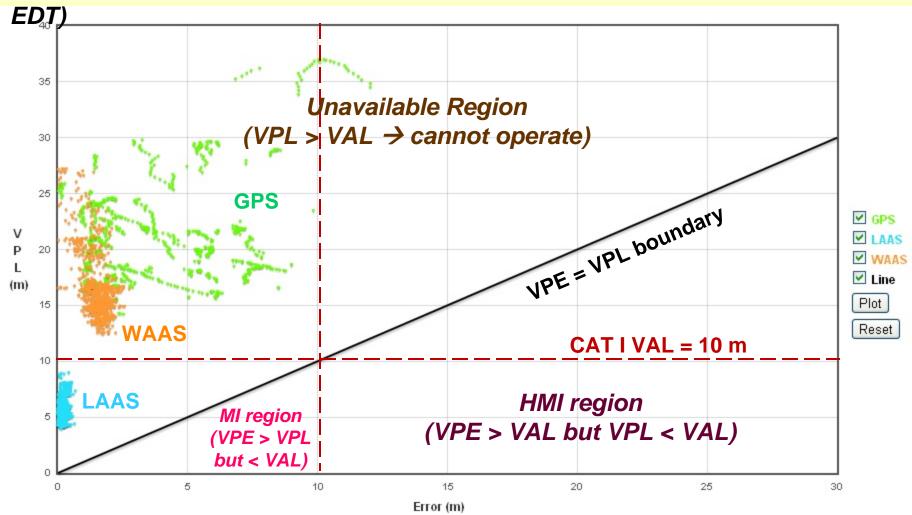
- From GPS SPS Performance Standard (4th Ed, 2008): No more than three (3) GPS service failures per year (across GPS constellation) for a maximum constellation of 32 satellites.
 - Service failure: SV failure leading to SPS user range error > 4.42 URA without timely OCS warning or alert
- Assuming 3 failures per year over a 32-SV constellation:

$$\frac{3 \text{ events/year}}{8766 \text{ hours/year}} \frac{1}{32 \text{ satellites}} = \boxed{1.07 \times 10^{-5} \text{ events/SV/hour}}$$
$$1.07 \times 10^{-5} \frac{\text{events/SV}}{\text{hour}} \frac{150 \text{ sec/approach}}{3600 \text{ sec/hour}} = 4.46 \times 10^{-7} \text{ events/SV/approach}$$

SV Fault Probabilities Assumed by LAAS

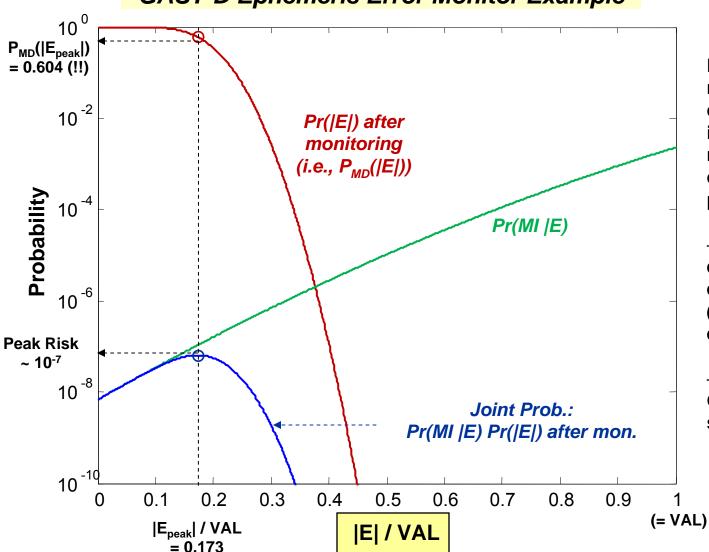
- SPS definition of service failure does not cover all faults of concern to LAAS.
 - LAAS users could be threatened by differential range errors of 1 meter or less ("peak risk" concept).
- SV prior failure probability for LAAS integrity analyses was conservatively set to 10⁻⁴ per SV per hour (or 4.2 x 10⁻⁶ per SV per approach).
 - This is 9.4 times larger than probability on previous slide.
- Furthermore, given lack of detail regarding failure types in SPS Performance Standard, each SV failure mode was assigned this entire probability (rather than dividing probability among them).

Interpretations of "MI" and "HMI"


- Recall that Misleading Information (MI) refers to a condition where the actual error exceeds a safe limit without annunciation within the time to alert.
- For WAAS, and in the GBAS SARPS, the "safe limit" is defined as the protection level, not the alert limit.
 - Therefore, protection level error bounding is required to avoid loss of integrity
 - This avoids limiting applicability to particular operations (which define alert limits), but it is much harder to achieve.
- MI in which the alert limit is also exceeded can be defined as Hazardously Misleading Information (HMI).
 - Note that "Hazardous" does not specify consequence in Hazard Risk Index.

"Triangle Chart" Error Bounding Illustration

VPE and VPL at Newark Airport from 9/12/11 (10 AM EDT) to 9/13/11 (8 PM


Source: FAA Technical Center, http://laas.tc.faa.gov/EWR Graph.html

The "Peak Risk" Model

GAST-D Ephemeris Error Monitor Example

Results are mathematically correct, but errors in assumptions make conclusions conservative in practice:

- (VAL + δ) is completely dangerous, while (VAL - δ) is completely safe
- P_{MD}(E) based on Gaussian test statistic behavior

The Role of "Threat Models"

- Faults and anomalies are rare events that are often difficult to characterize by theory or data.
 - For example, anomalous signal deformation has only been observed once, on GPS SVN 19 in 1993.
- Most engineers prefer deterministic models for fault behavior, including min. and max. parameter bounds.
- Therefore, threat models that bound extent and behavior are developed for each fault mode or anomaly of concern.
- Big Problem: the uncertainty created by lack of information does not go away.
 - Very conservative modeling may sacrifice performance.
 - The temptation of non-conservative modeling (when facing difficult threats) has led to unpleasant surprises for both WAAS and LAAS.

The Role of "Assertions"

- As shown on the previous slides, imperfect knowledge of rare events requires that (conservative) assumptions be made to make modeling and mitigation practical.
- Assumptions like these are often called "assertions," which carries a subtle difference in meaning.
- An "assertion" typically represents an assumption that is being "asserted" as true for the purposes of integrity or continuity validation.
 - This clarifies that the subsequent validation is dependent on the assertion and its rationale.
 - The degree of justification for a given assertion varies with its "reasonableness" and its "criticality."
- As you can imagine, assertions are easy to abuse, and they often are – be careful!!

Documentation of Results

- WAAS and LAAS have developed a specific approach to documenting integrity validation in support of system design approval (SDA, aka "certification").
- The key elements:
 - Algorithm Description Documents (ADDs) these describe each algorithm in complete detail, sufficient to allow DO-178B-qualified coding by someone unfamiliar with the algorithm.
 - "HMI" Document this show in detail how the system and its monitors mitigate all identified integrity threats (it addresses continuity and availability to a much lesser extent).
- These documents support the existing FAA safetyassurance process.
 - FAA System Safety Handbook:
 http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/

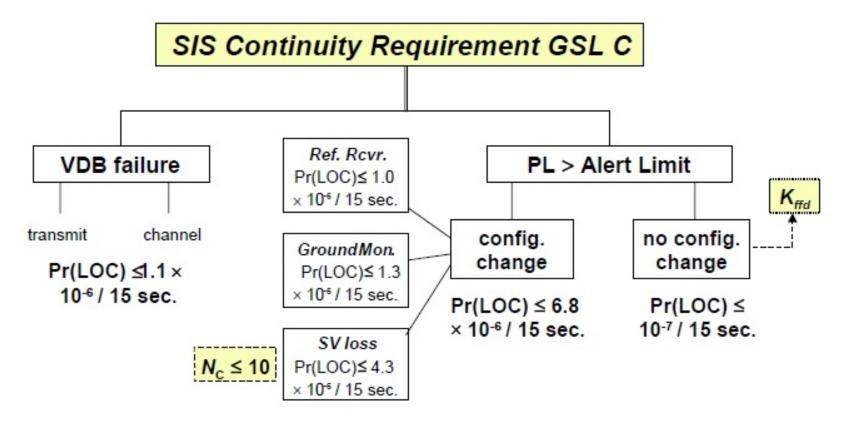
The Challenge of Continuity

- Two causes of continuity loss:
 - Actual faults or anomalies
 - "Fault-free" alerts: monitor alerts due to excessive measurement noise under "nominal" conditions
- Actual faults may directly cause loss of service (e.g., loss of satellite or VDB signal) or trigger monitor alert and measurement exclusion.
 - In latter case, monitor protects integrity as designed, but at the price of continuity.
- Loss of individual satellites (or reference receivers) do not necessarily cause loss of continuity...
 - Protection levels computed from remaining measurements may still be acceptable

Critical Satellites

- A critical satellite is one whose loss (or exclusion due to monitor alert) leads to loss of continuity.
 - VPL with critical satellite included is below VAL
 - With critical satellite excluded, VPL now exceeds VAL, requiring operation to be aborted

Critical Satellites in CAT I LAAS (Original RTCA Error Model, 1998)


Number of Usable SV in View	Fraction of Avail. Geometries	Average Number of Critical Satellites
3 or less	0	N/A
4	0.0022	4.0 (by definition)
5	0.0516	1.2083
6	0.2531	0.2543
7	0.4136	0.0326
8 or more	0.2795	< 0.001

CAT I LAAS SIS Continuity Allocation

Source: RTCA LAAS MASPS, DO-245A, Dec. 2004.

- Required Mean Times to Failure (assuming Exponential distribution of failure times)
 for each function and component can be derived from this allocation.
- Assumed GPS satellite MTTF ≥ 9740 hrs (beyond spec. → historical performance)

What Makes Continuity So Hard?

- The key difficulty to meeting the continuity requirement is doing so while meeting the (highervisibility) integrity requirement at the same time.
 - Meeting integrity with high confidence requires a great deal of conservatism to account for threat uncertainty.
 - Thresholds are generally set as tight as false-alert allocations from continuity requirement allow.
 - However, as will be seen, monitor test statistics do not follow assumed Gaussian distributions at low probabilities.
 - As a result, measurements will be excluded much more often than necessary if perfect information were available.
- Required MTTFs are difficult to meet with real HW.
- Budget has no allocation for RF interference.

Specific vs. Average Probabilities

- Average Risk (my definition): the probability of unsafe conditions based upon the convolved ("averaged") estimated probabilities of all unknown events.
- Specific Risk (my definition): the probability of unsafe conditions subject to the assumption that all (negative but credible) unknown events that could be known occur with a probability of one.
 - Required for aviation integrity → must meet requirements under worst-case conditions that are deemed safe for use ("available").
- Key Question: when can continuity be evaluated under "average risk" criteria?
 - WAAS LPV continuity is evaluated this way → loss of continuity deemed to be of "Minor" consequence.
 - LAAS CAT I may follow the same approach, but loss of continuity for CAT III is likely to be deemed "Major" or higher.

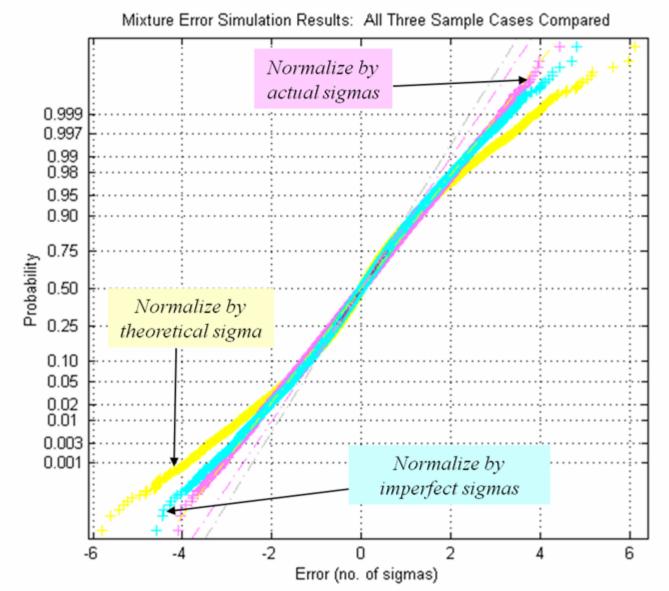
Outline

- Augmented GNSS Terminology
- Introduction to GNSS and GNSS Augmentation Differential GNSS (DGNSS)
- GBAS and SBAS System Architectures
- Aviation Applications and Requirements
- Principles of Integrity and Continuity
- Specific Examples:
 - Nominal Error Bounding
 - Signal Deformation Monitoring
 - Ephemeris Monitoring
 - Ionospheric Anomaly Mitigation
- Summary

Nominal Error Bounding: Problem Statement

- As shown previously, an important component of integrity risk is HMI under "nominal conditions"
 - For GBAS, integrity risk under "H0 hypothesis"
- In principle, "nominal" refers to the error model that reflects normal working conditions.
 - No system faults or anomalies are present
 - Integrity risk is given by the tail probabilities of the nominal error distribution
- In practice, this division between "nominal" and "faulted" or "anomalous" conditions is too simple.
 - Multiple degrees of "off-nominal" conditions also exist
 - No one error distribution applies, and the tails of the distributions that might apply are fatter than Gaussian

Nominal Error Bounding: Requirements

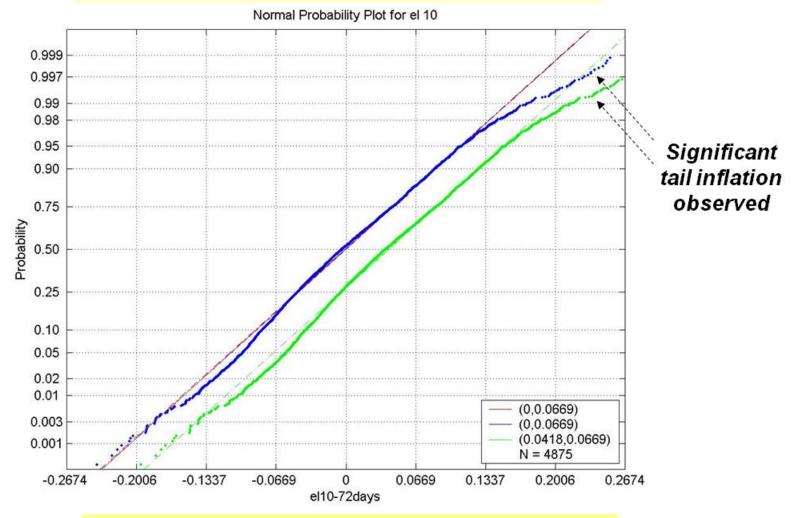


- SARPS and RTCA standards require that nominal error distribution be Gaussian with zero mean.
 - Recall previous slides on protection level equations
- Therefore, SBAS and GBAS must develop "overbounding" zero-mean Gaussian distributions that bound the cumulative distribution function (cdf) of the actual (unknown) nominal error distribution in the tails.
 - "Tails" refers to probabilities out to integrity risk allocated to "HMI under nominal conditions" ($\sim 6 \times 10^{-9}$ for CAT I GBAS)
- When the "nominal error distribution" is actually a family of off-nominal, non-Gaussian distributions of unknown form and magnitude, *proving* a bound at the ~ 10⁻⁷ – 10⁻⁹ probability level is not possible.
 - What can we do, short of that?

Theoretical Impact of Sampling Mixtures on Gaussian Tails

"Mixing" of Gaussian distributions with different sigmas results in non-Gaussian tail behavior)

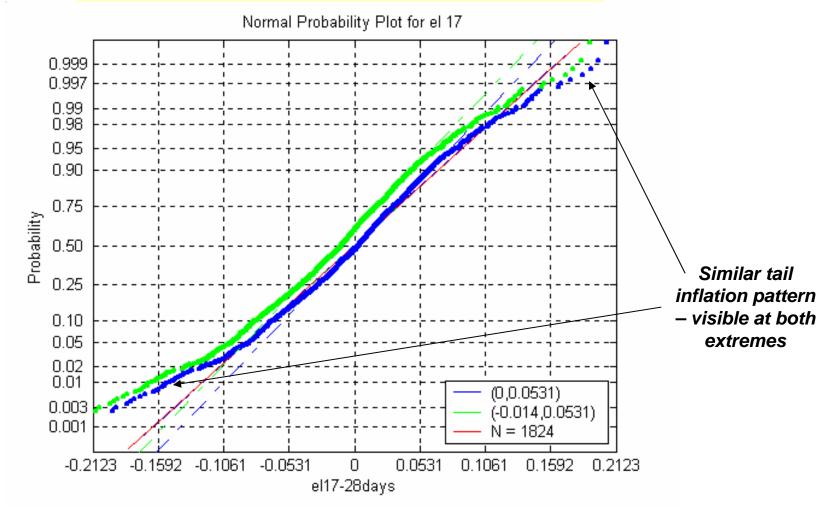
- Result trends toward double-exponential dist. (J.B. Parker, 1960's)
- Corresponds to combinations of many varieties of "off-nominal" conditions, even if their tails were Gaussian
- Since each input dist. is actually fatter-than-Gaussian in the tails, resulting distribution is unknown.



LAAS Test Prototype Error Estimates

(9.5 – 10.5 degree SV elevation angle bin)

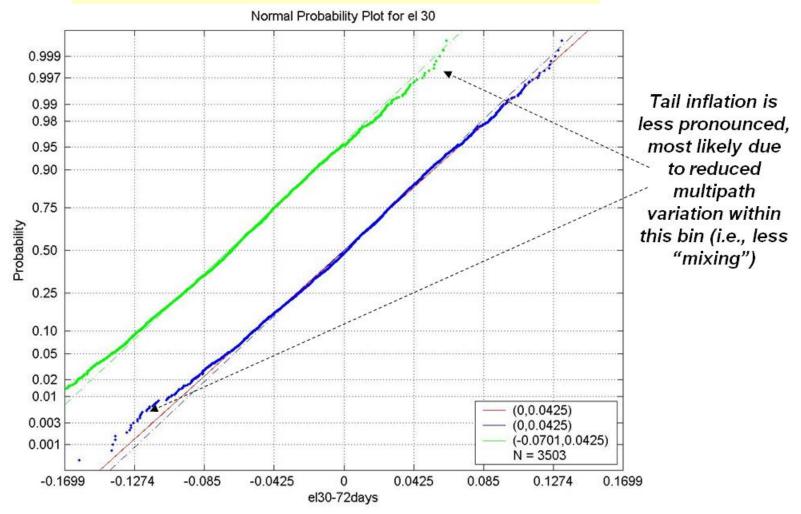
72 days of data: June 1999 – June 2000 200 seconds between samples



LAAS Test Prototype Error Estimates

(16.5 – 17.5 degree SV elevation angle bin)

28 days of data since June 2000 200 seconds between samples


Source: John Warburton, FAA Technical Center

LAAS Test Prototype Error Estimates (29.5 – 30.5 degree SV elevation angle bin)

72 days of data: June 1999 – June 2000 200 seconds between samples

Source: John Warburton, FAA Technical Center

Nominal Error Bounding: Theoretical Approaches

- Empirical approach: inflate sample sigma of collected data until zero-mean Gaussian bounds tail behavior.
 - Insufficient due to uncertainty of behavior beyond sampled data
- Error modeling approach: attempt to bound each error source separately, arranging error sources into "deterministic," "non-Gaussian" categories, etc., and creating a complex, non-Gaussian overall error model.
 - Necessary and useful, but does not address the problem of observing unpredicted fatter-than-Gaussian tails in collected data.
- B. DeCleene overbounding "proof" (ION GPS 2000):
 - Requires unknown error distribution be symmetric and unimodal
- J. Rife "paired" and "core" bounding
 - Relaxes DeCleene constraints, but still places conditions on tails

Nominal Error Bounding: Theoretical Approaches (2)

WAAS CNMP "moment bounding"

- Relaxes constraints on non-Gaussian tails in data by selecting parameters that provide a "moment bound," meaning a bound on the moments of the collected data.
- In theory, this bounds the worst distribution represented by the moments of the collected data (at the price of conservatism).
- In practice, extensive extrapolation from limited collected data is required → fundamental tail uncertainty remains.

Bounding via Extreme Value Theory (EVT)

- Under certain conditions, the tail behavior of errors could be asserted to follow distributions established by EVT.
- The same problem applies: How would you show than any particular conditions on unknown errors are met?
- Bottom Line (Sam's opinion): It is impossible to "prove" nominal error bounding at the 10⁻⁷ level or below.

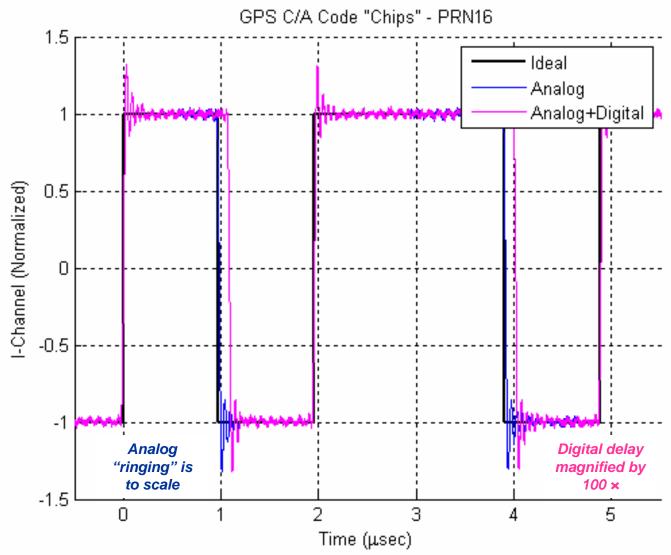
Nominal Error Bounding: A Practical Addition

- Except for simple empirical bounding, the approaches above require substantial inflation to achieve an imaginary "proof" of nominal error bounding.
 - Availability may be sacrificed for no benefit.
- Rather than relying on this, add a second step: Monte Carlo sensitivity analysis of the models for each error source.
- Specifically, run Monte Carlo simulations of the theoretical error model (inside a system simulation) in which one error source at a time is replaced by a very conservative "worst case nominal" model of that source.
- Compare results to theoretical approach to determine if the former is adequate, too conservative, or not enough.

GBAS Signal-in-Space Failure Modes

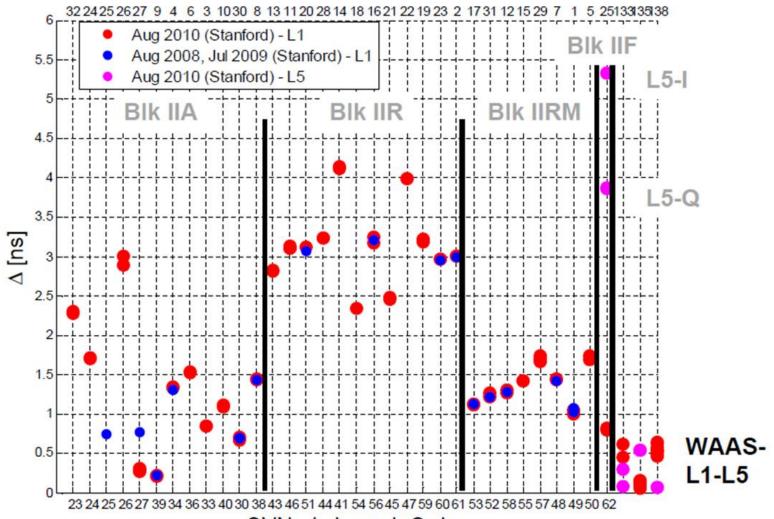
- C/A Code Signal Deformation (aka "Evil Waveforms")
- Low Satellite Signal Power
- Satellite Code-Carrier Divergence
- Erroneous Ephemeris Data
- Excessive Range Error Acceleration
- Ionospheric Spatial-Gradient Anomaly
- Tropospheric Gradient Anomaly

"single-SV failures" (in H2)


"all other failures" (in H2)

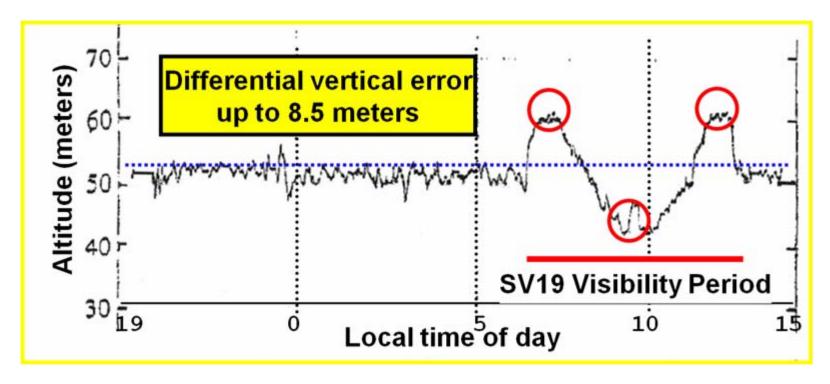
Nominal Signals with Deformation (PRN 16 Example)

Source: G. Wong, et al, "Nominal GPS Signal Deformations, ION GNSS 2011

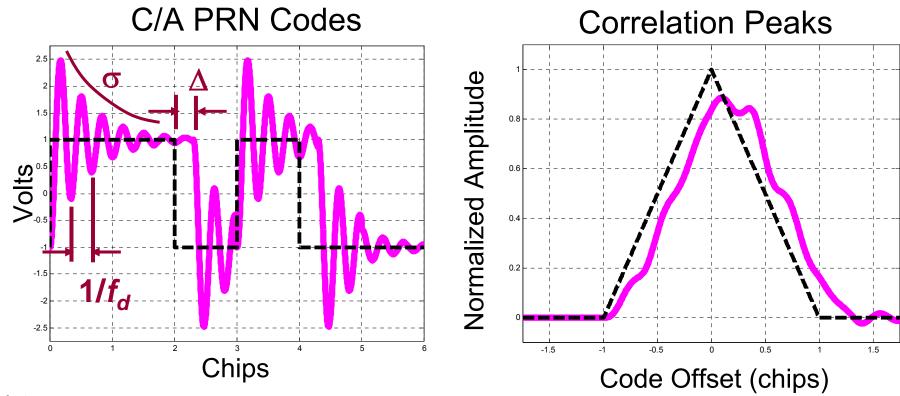


Nominal Digital Distortion: Comparison Across Satellites

Source: G. Wong, et al, "Characterization of Signal Deformations," ION GNSS 2010

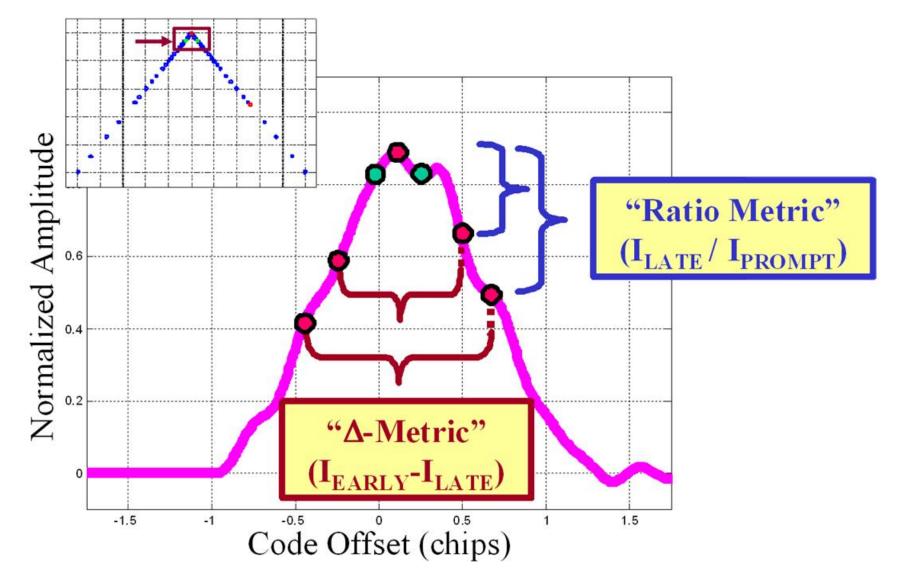


Signal Deformation (Modulation) Failure on SVN/PRN 19 in 1993


- Differential errors occur when reference and user receivers track code differently, e.g.:
 - Different RF front-end bandwidths
 - Different code correlator spacings
 - Different code tracking filter group delays

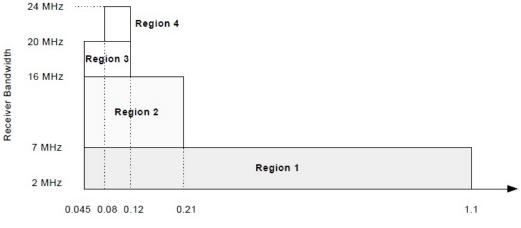
Anomalous Signal Deformation Example from "2nd-Order-Step" ICAO Threat Model

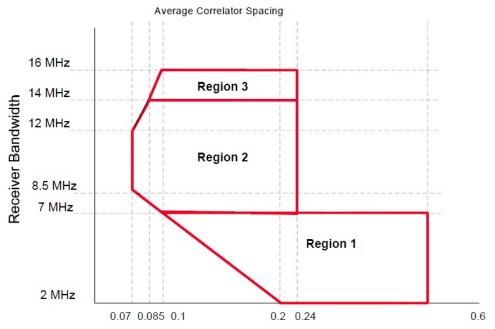
Comparison of Ideal and "Evil Waveforms" for Threat Model C


Note:

Threat Model A: Digital Failure Mode (Lead/Lad Only: Δ) **Threat Model B:** Analog Failure Mode ("Ringing" Only: $f_{\sigma}\sigma$)

Signal Deformation Test Statistics Using Multiple-Correlator Receiver


Allowed User Receiver Designs (RTCA LAAS MOPS, DO-253C, 12/08)



Early-minus-Late (E-L) Receivers

Receivers

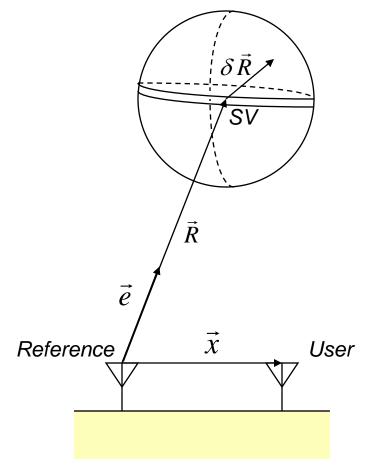
Double-Delta (DD)

Average Correlator Spacing

Ephemeris Failure Impact on GBAS Users

 DGPS user ranging error due to satellite ephemeris error is:

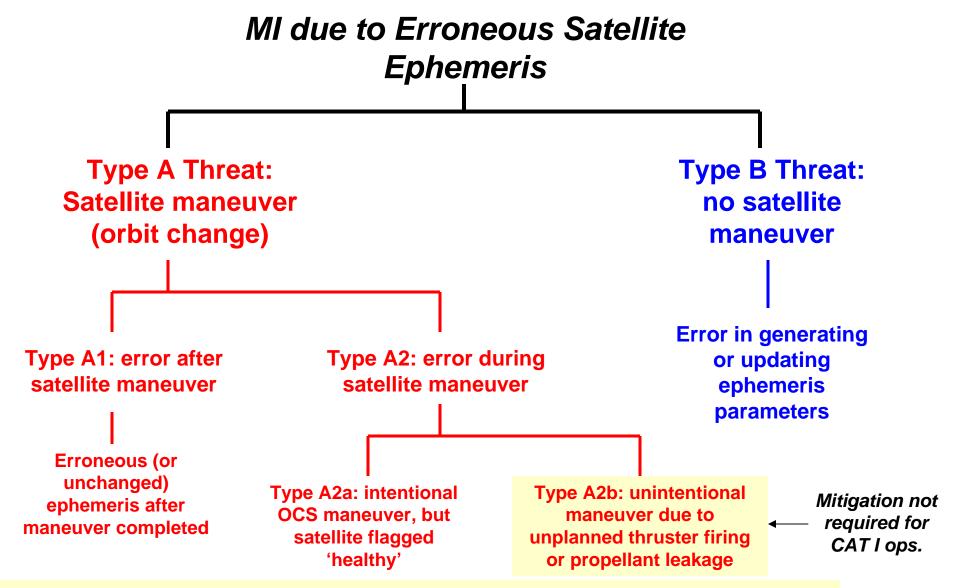
$$\delta \rho = \frac{\delta R^{T} (\boldsymbol{I} - e e^{T}) x}{|R|}$$


|R| = Reference -> SV range

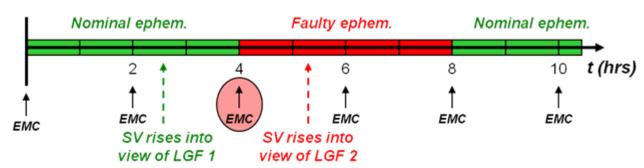
 \vec{e} = Reference -> SV unit vector

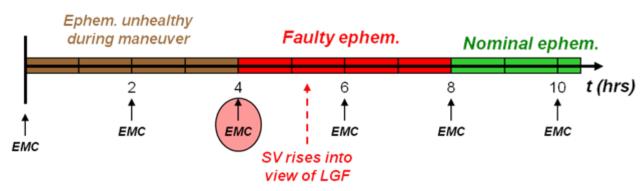
 $\delta \vec{R}$ = SV ephemeris error vector

 \vec{x} = Reference -> user vector


• Worst-case user error occurs when $\delta \vec{R}$ is parallel to \vec{x} and when \vec{e} is orthogonal to \vec{x}

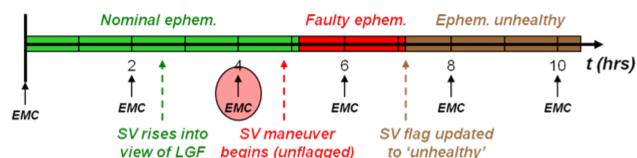
LAAS Ephemeris Threat Types


Timelines of Potential Ephemeris Failures


Source: H. Tang, et al, "Ephemeris Fault Analysis," IEEE/ION PLANS 2010

EMC: ephemeris message changeover

Type B Threat:
No Satellite
Maneuver

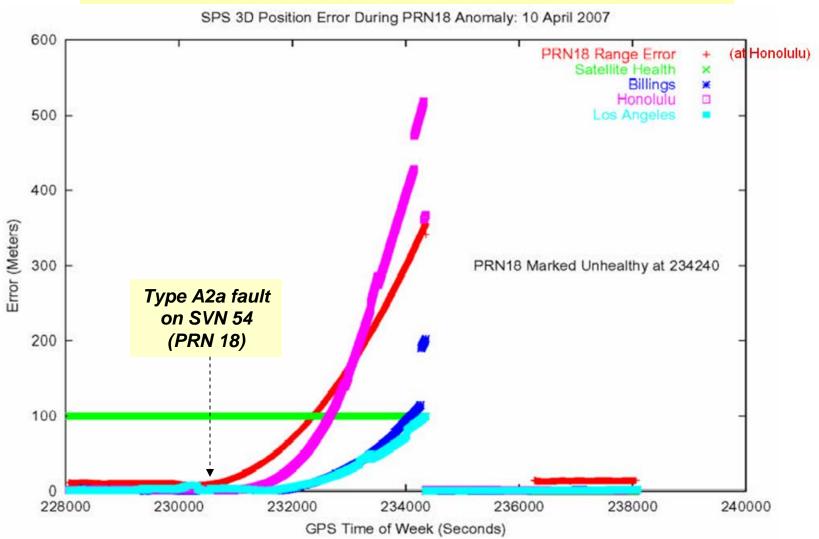

Type A1 Threat: Error After Satellite Maneuver Completed

Type A2a Threat:

Error During

Satellite Maneuver
(after △V, during drift
to new orbit)

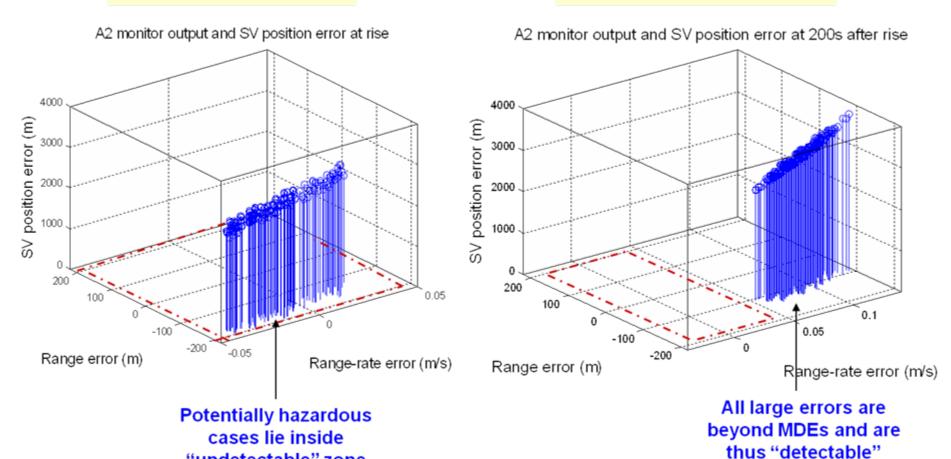
LGF Ephemeris Monitoring


- Detection of Type B faults is based on comparison of previous (accurate) to current (possibly erroneous) ephemeris parameters.
 - Project previous parameters (or satellite positions) forward in time to compare with current ones.
 - For SV acquisition, first-order-hold (FOH) test uses two days of prior ephemerides; zero-order-hold (ZOH) uses one day.
 - FOH test achieves Minimum Detectable Error (MDE) of no more than 2700 meters in 3-D SV position error.
- No "guaranteed" means to detect Type A faults.
 - Instead, tight thresholds on Message Field Range Test
 (MFRT) confirm that pseudorange and range-rate correction magnitudes show no sign of large ephemeris errors.
 - Performance validation requires extensive simulation of potential worst-case scenarios.

Observed GPS SPS 3-D Position Errors on April 10, 2007

Source: FAATC GPS SPS PAN Report #58, 31 July 2007

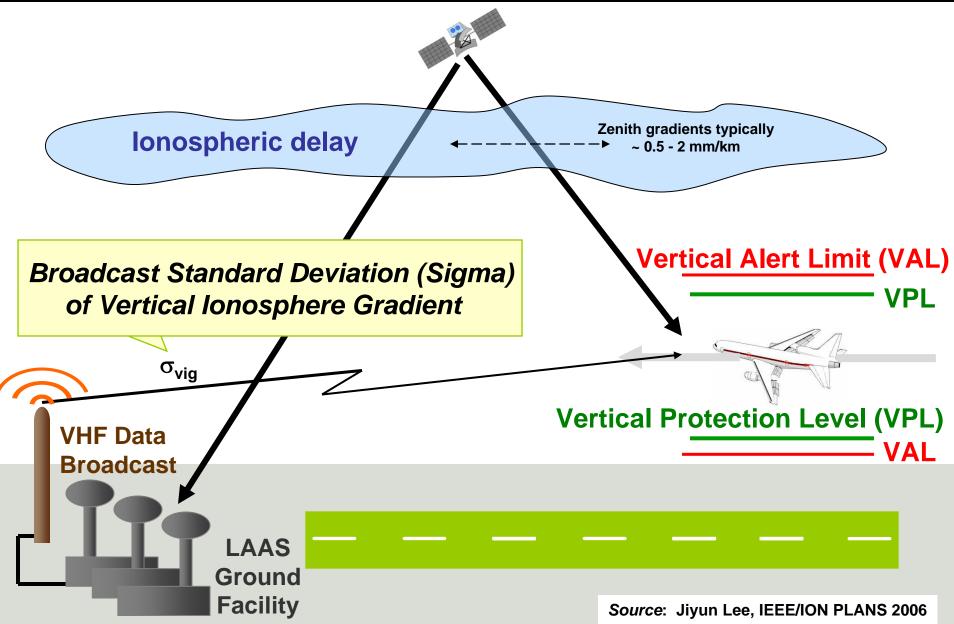
"Type A" Ephemeris Monitoring: Impact of 200-sec Waiting Period


Source: H. Tang, et al, "Ephemeris Fault Analysis," IEEE/ION PLANS 2010

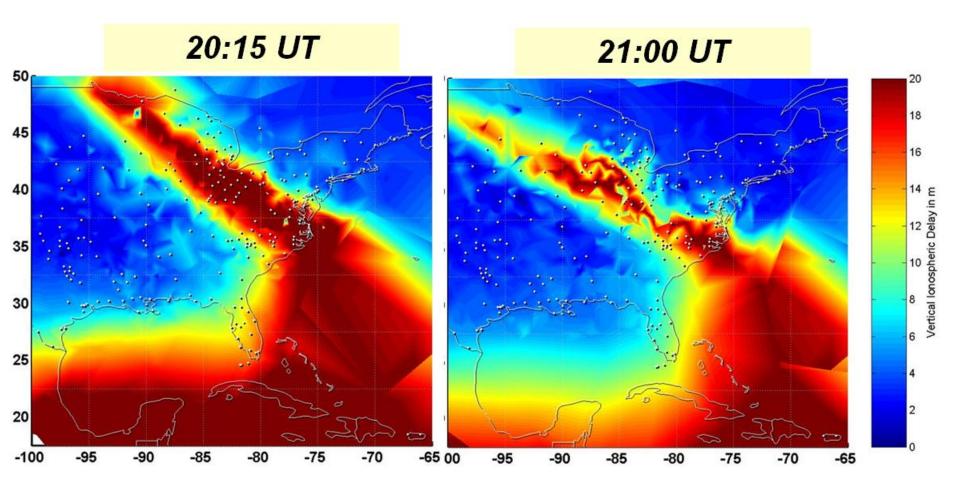
Results for 1-degree Lat/Long. Grid of Hypothetical LGF Locations

At SV Rise

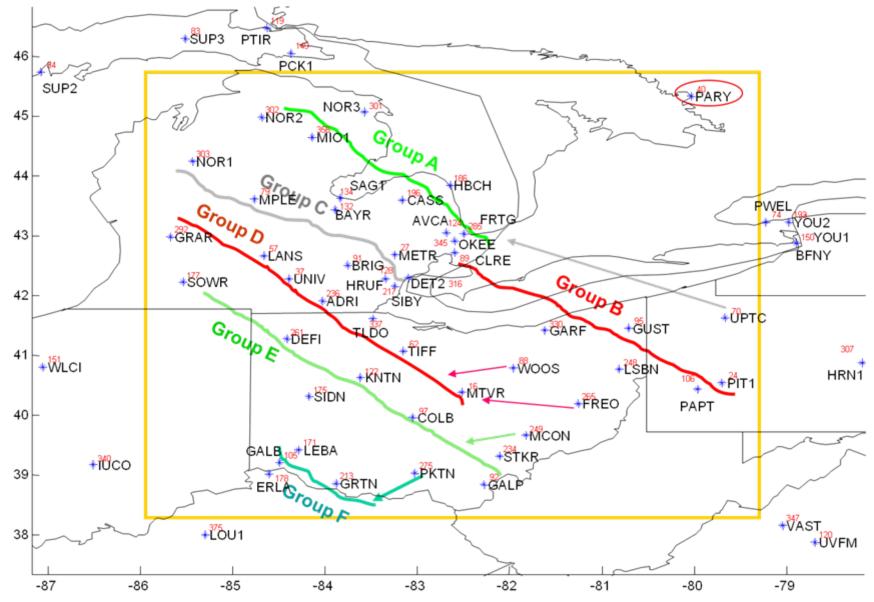
"undetectable" zone


200 sec After SV Rise

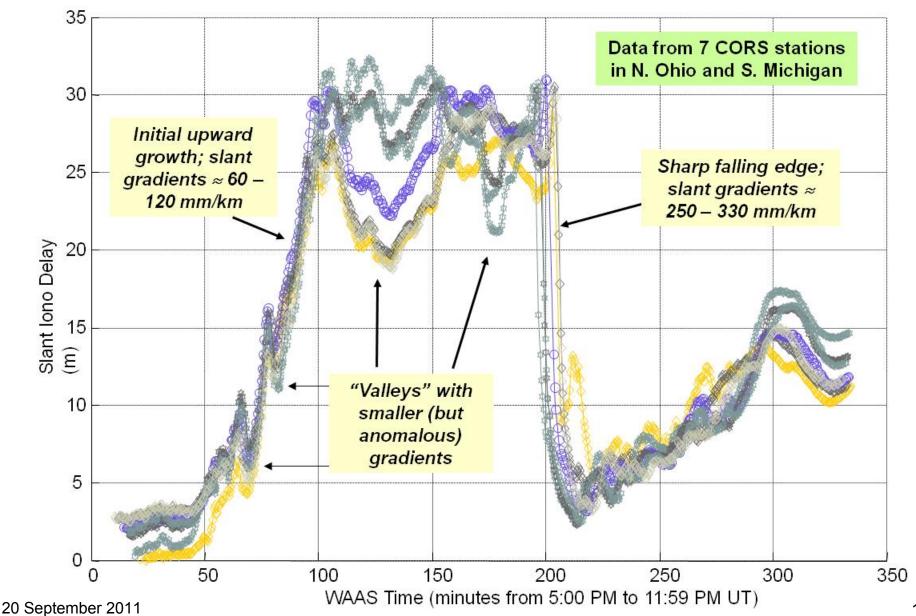
Impact of Ionospheric Decorrelation on GBAS



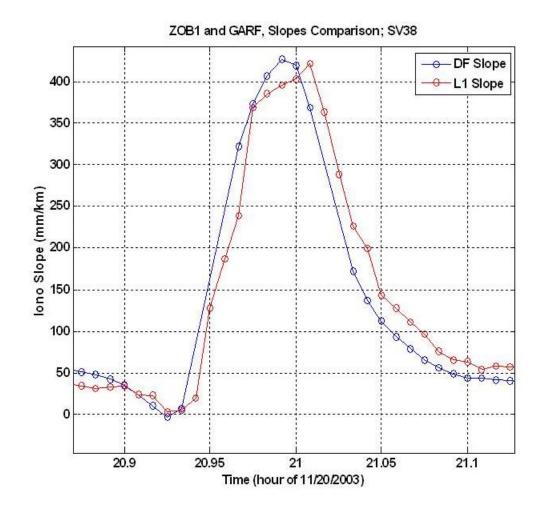
Severe Ionosphere Gradient Anomaly on 20 November 2003



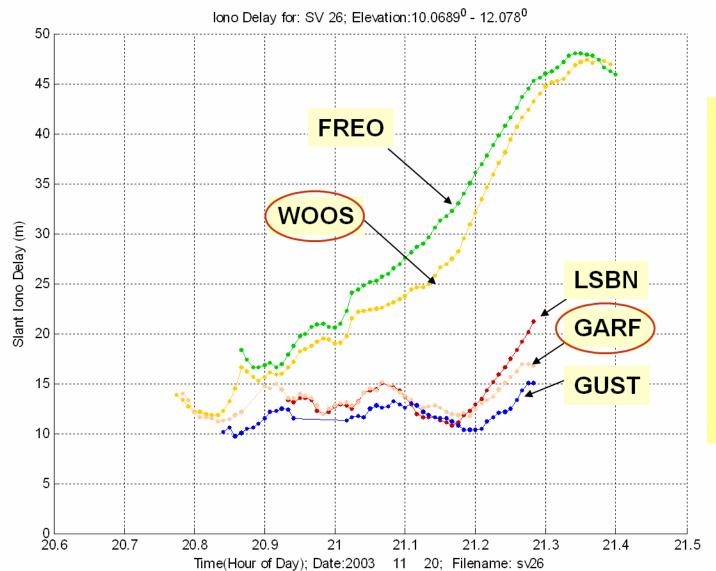
Map of CORS Stations in Ohio/Michigan Region in 2003



Moving Ionosphere Delay "Bubble" in Ohio/Michigan Region on 20 Nov. 2003

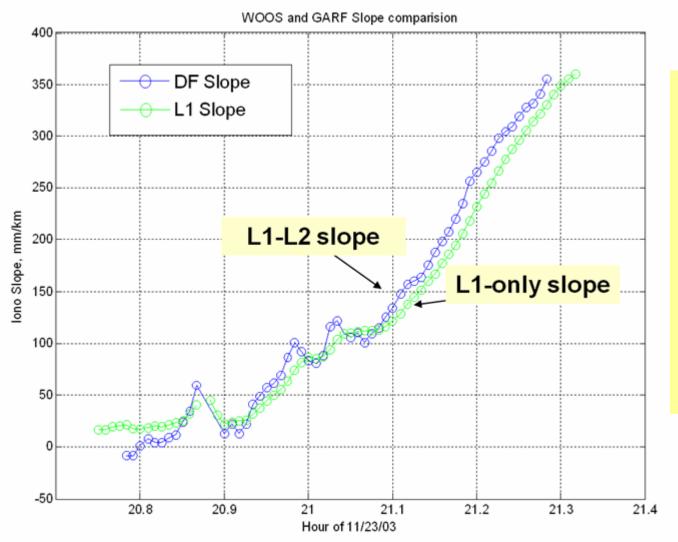


Validation of High-Elevation Anomaly (SVN 38, ZOB1/GARF, 20/11/03)



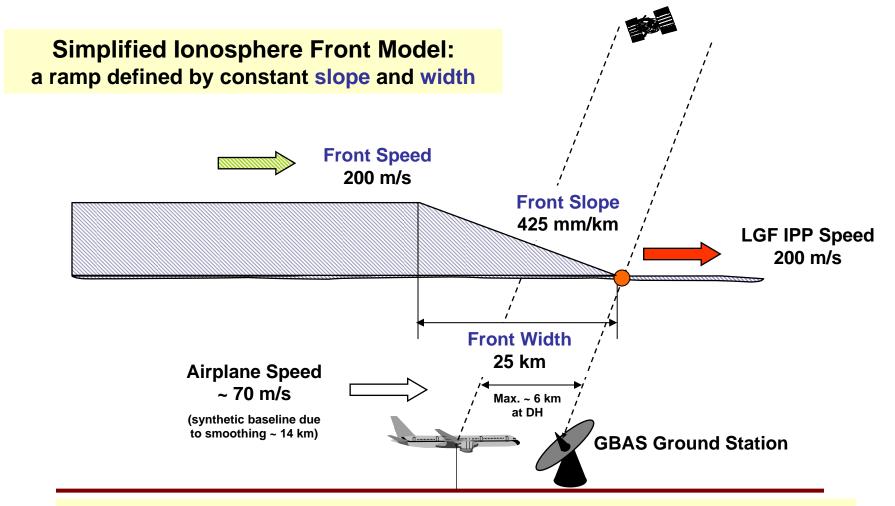
Maximum slope from L1-only data ≅ 413 mm/km

SVN 26 Slant Delays Observed at WOOS, FREO, LSBN, and GARF


- Sufficient similarity between the two sets of ionosphere delays exists
- Lines-of-Sight from FREO and WOOS are within the bulk of the "enhanced" ionosphere gradient

Severe Slope Validated with L1 Data WOOS/GARF, SVN 26, 20 Nov. 2003

Estimated Slope using L1 Code-minus-Carrier Data

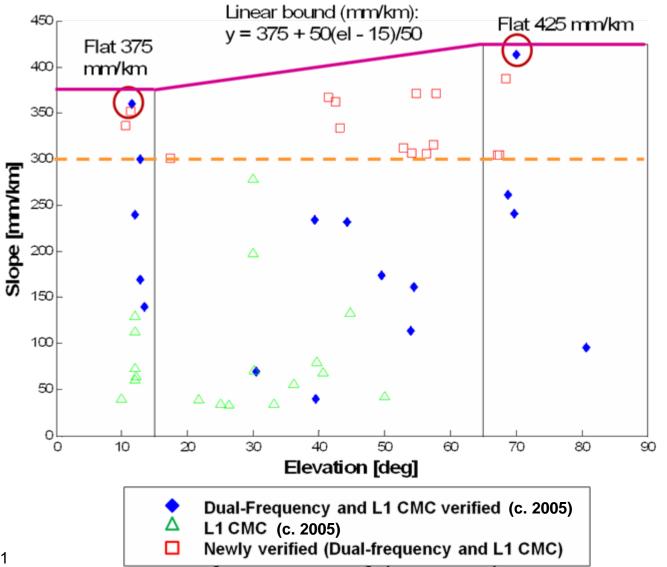


- Maximum
 Validated Slope:
 ~ 360 mm/km
- This observation window is very close to the time that peak ionosphere gradients were observed on higher-elevation satellites.

Ionosphere Anomaly Front Model: Potential Impact on a GBAS User

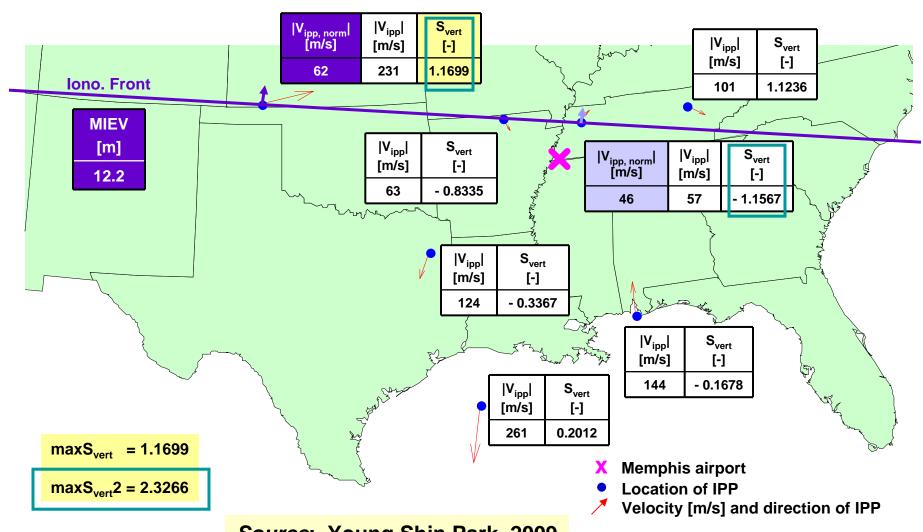
Stationary Ionosphere Front Scenario:

Ionosphere front and IPP of ground station IPP move with same velocity.


Maximum Range Error at DH: $425 \text{ mm/km} \times 20 \text{ km} = 8.5 \text{ meters}$

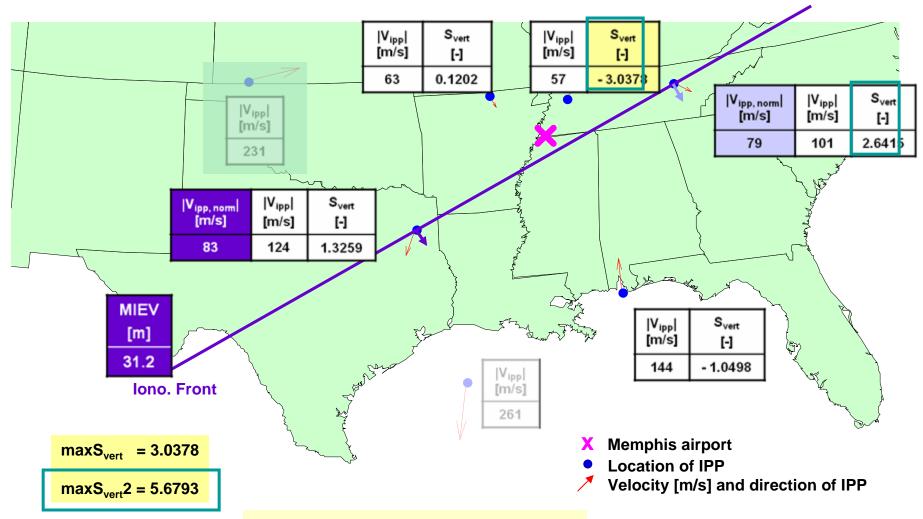
Resulting CONUS Threat Model and Validation Data

Source: J. Lee, "Long-Term Iono. Anomaly Monitoring," ION ITM 2011



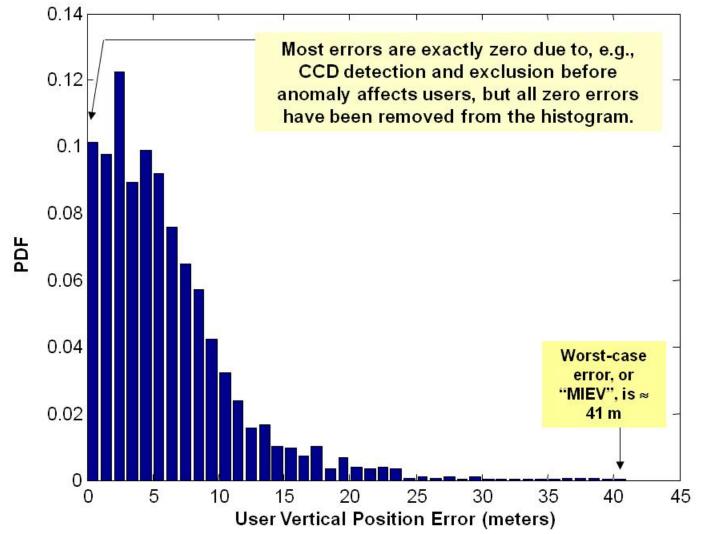
"Worst-Case" Impact on GBAS User near Memphis Airport (1)

All Satellites in View at 00:08

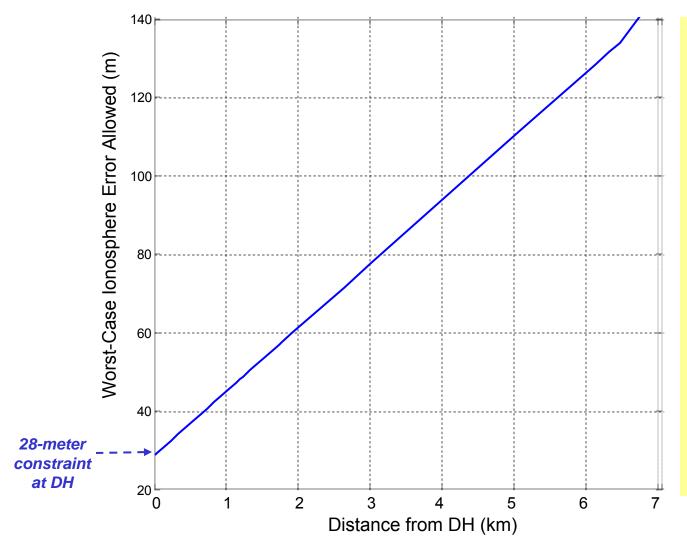

Source: Young Shin Park, 2009

"Worst-Case" Impact on CAT I Approach to Memphis Airport (2)

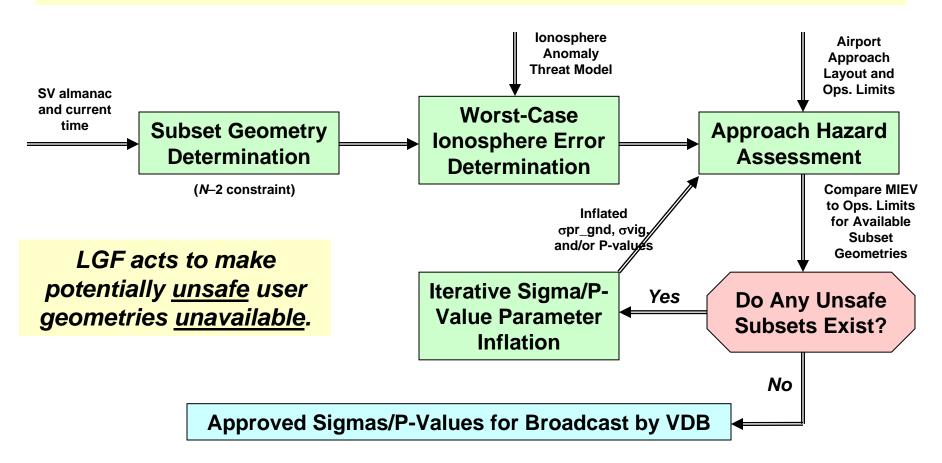
Worst-Case 2-SV-Out Subset at 00:08


Source: Young Shin Park, 2009

"Semi-random" Results for Memphis LGF at 6 km DH

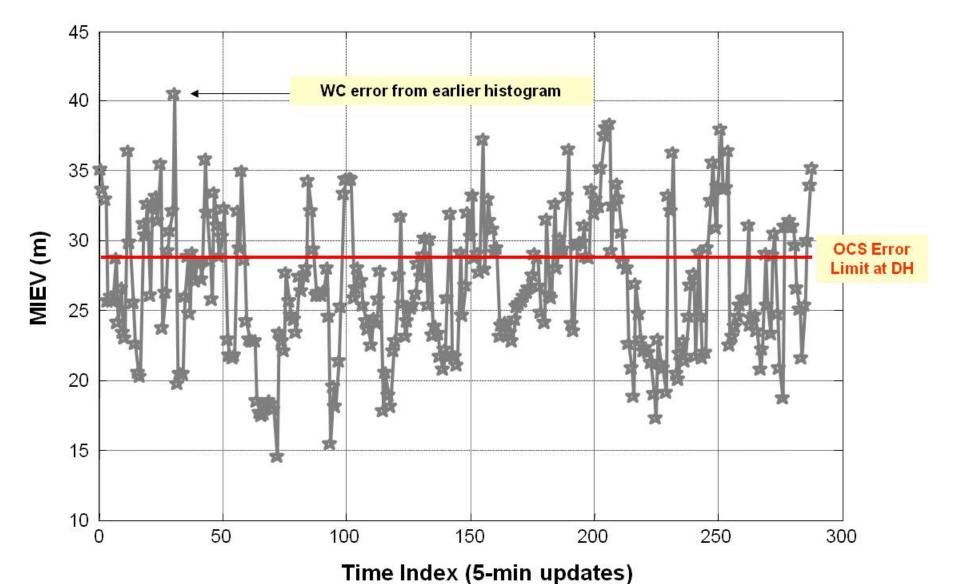

RTCA-24 Constellation; All-in-view, all 1-SV-out, and all 2-SV-out subsets included; 2 satellites impacted simultaneously by ionosphere anomaly

OCS-based "Tolerable Error Limit" (TEL)


- This plot shows "TEL" based on the original Obstacle Clearance Surface (OCS) requirements from which the precision approach alert limits were derived.
- Re-examination of OCS requirements (with lessconservative assumptions) led to larger "safe" error limit → used only for worst-case iono. errors.
- Similar analysis for WAAS justified 35-meter VAL for LPV approaches to 200 ft DH (same as CAT I LAAS).
- · See ref. [8] for details.

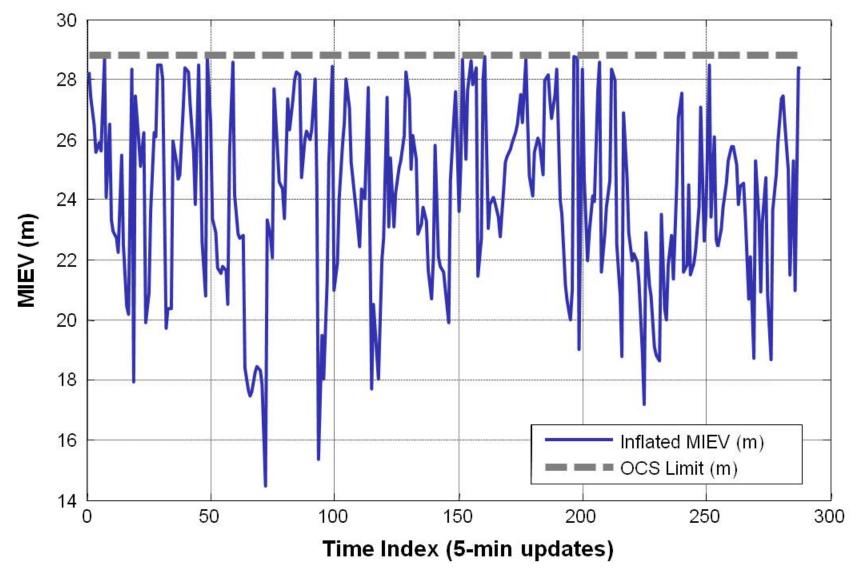
Simplified Flow Chart for Real-Time Inflation in CAT I LGF

LAAS Ground Facility (LGF) Real-Time Geometry Screening

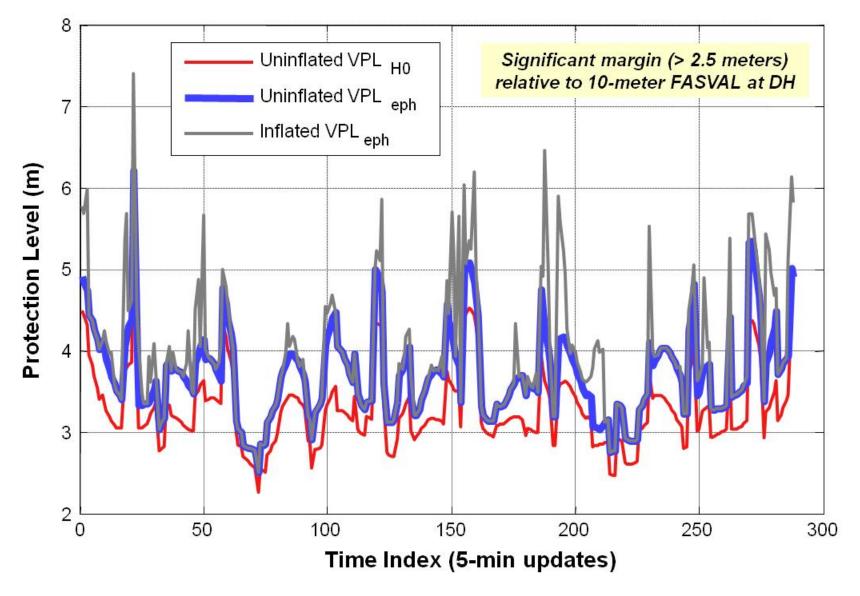

References: J. Lee, et al., Proceedings of ION GNSS 2006

S. Ramakrishnan, et al., Proceedings of ION NTM 2008

MIEV for Memphis at 6 km Prior to Inflation



MIEV for Memphis at 6 km after Inflation



Protection Levels for Memphis at 6 km from LGF

Outline

- Augmented GNSS Terminology
- Introduction to GNSS and GNSS Augmentation Differential GNSS (DGNSS)
- GBAS and SBAS System Architectures
- Aviation Applications and Requirements
- Principles of Integrity and Continuity
- Specific Examples:
 - Nominal Error Bounding
 - Signal Deformation Monitoring
 - Ephemeris Monitoring
 - Ionospheric Anomaly Mitigation
- Summary

Summary and Concluding Thoughts

- Designing integrity and continuity into GNSS and its augmentations is more difficult than it appears. It is much more than a mathematical challenge.
 - Requirements imperfectly represent the desired performance and safety outcomes and are hard to change.
 - Key parameters and physical behaviors are imperfectly known, at best.
 - Engineering judgment and objective use of conservatism are required.
- The flexibility needed to adapt to new information conflicts with the practical desire to "lock down" standards, algorithms, and certified software.
 - No single solution to this problem...

Key Sources (not already listed)

- 1. Misra and Enge, *Global Positioning Systems: Signals, Measurements, and Performance* (2nd Ed, 2006). www.gpstextbook.com
- 2. Parkinson and Spilker, Eds., *Global Positioning System: Theory and Applications* (AIAA, 2 Vols., 1996), esp. Vol. II, Ch. 1. <u>www.aiaa.org</u>
- 3. Gleason and Gebre-Egziabher, Eds., GNSS Applications and Methods (Artech House, 2009), esp. Chs. 4 and 10. http://www.artechhouse.com
- 4. Walter, et al, "Integrity Lessons from the WAAS Integrity Performance Panel (WIPP)," *Proc. ION NTM 2003*. Anaheim, CA, Jan. 22-24, 2003.
- 5. Grewal, et al, "Overview of the WAAS Integrity Design," *Proc. ION GPS/GNSS 2003*. Portland, OR, Sept. 9-12, 2003.
- 6. Rife, el al, "Core Overbounding and its Implications for LAAS Integrity," *Proc. ION GNSS 2004*, Long Beach, CA, Sept. 21-24, 2004, pp. 2810-2821.
- 7. Rife, et al, "Formulation of a Time-Varying Maximum Allowable Error for Ground-Based Augmentation Systems," *IEEE Trans. Aerospace and Electronic Systems*, Vol. 44, No. 2, April 2008.
- 8. Shively, et al, "Safety Concepts for Mitigation of Ionospheric Anomaly Errors in GBAS," *Proc. ION NTM 2008*, San Diego, CA, Jan. 28-30, 2008, pp. 367-381.